金属聚合物复合材料的电树枝生长模拟
收稿日期: 2013-11-27
修回日期: 2014-03-03
网络出版日期: 2014-03-07
基金资助
高等学校学科创新引智计划 (B07050); 航空科学基金(2013ZF53068); 西北工业大学基础研究基金(JC20110257)
Simulation of Electrical Tree Growth in Metal-loaded Composites
Received date: 2013-11-27
Revised date: 2014-03-03
Online published: 2014-03-07
Supported by
"111" Project (B07050); Aviation Science Foundation (2013ZF53068); Basic Research Foundation of Northwestern Polytechnical University (JC20110257)
为了研究金属聚合物复合材料的击穿特性,在WZ模型的基础上建立了在绝缘聚合物介质中填充不同体积浓度的理想金属粒子的逾渗模型.利用计算机对放电通道的发展进行仿真,并对得到的仿真图形进行比较,研究了金属颗粒的体积浓度、下极板施加的电压、放电通道内的阈值电压和树点发展的概率指数对放电通道发展的影响.结果表明,金属粒子体积浓度越大,则放电树枝分枝越多.因此,填充金属颗粒可以明显地增强绝缘介质的导电性,其中逾渗阈值为0.6.下极板施加的电压越大,放电通道内的阈值电压和树点发展的概率指数越小,则放电树枝分枝越多,同时放电树枝生长过程中的积累损伤越大,该规律与实际放电情况相符合.
姬尧尧 , 王富生 , 岳珠峰 , 刘志强 . 金属聚合物复合材料的电树枝生长模拟[J]. 航空学报, 2014 , 35(11) : 3182 -3189 . DOI: 10.7527/S1000-6893.2014.0005
Based on the WZ model, a percolation model of metal-loaded composites is simulated in different volume concentrations of metal particles to investigate its dielectric breakdown characteristics. By comparing with the simulation figures, the effects of model parameters on the development of the electrical trees are discussed, such as different volume concentrations of metal particles, electric potential, threshold voltage and probability exponent. The results present that with the increase of volume concentration of metal particles, the number of branches increases. Therefore, the conductivity of insulation material is significantly enhanced by metal particles and the percolation threshold is 0.6. In addition, with the increase of electric potential and the decrease of the threshold voltage and the probability exponent, the number of branches and accumulated damage increase. The result of the characteristic of electrical tree conforms to the actual conditions.
[1] Psarras G C. Hopping conductivity in polymer matrix-metal particles composites[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(10): 1545-1553.
[2] Ding N, Zhao B, Liu Z Q, et al. Simulation of ablation damage of composite laminates subjected to lightning strike[J]. Acta Aeronautica et Astronautica Sinica, 2013,34(2): 301-308. (in Chinese) 丁宁, 赵彬, 刘志强, 等. 复合材料层合板雷击烧蚀损伤模拟[J]. 航空学报, 2013, 34(2): 301-308.
[3] Chen X R, Xu Y, Cao X L, et al. Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(3): 847-860.
[4] Tan Z Y, Wan J L, Li Q Q. Fractal simulation of streamer discharge in liquid water[J]. High Voltage Engineering, 2012, 38(7): 1556-1561. (in Chinese) 谭震宇, 万基磊, 李清泉. 基于分形理论的水中流注放电仿真[J]. 高电压技术, 2012, 38(7): 1556-1561.
[5] Xie A S, Zheng X Q, Li S T, et al. Investigations of electrical trees in the inner layer of XLPE cable insulation using computer-aided image recording monitoring[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 685-693.
[6] Niemeyer L, Pietronero L, Wiesmann H J. Fractal dimension of dielectric breakdown[J]. Physical Review Letters, 1984, 52(12): 1033-1036.
[7] Wiesmann H J, Zeller H R. A fractal model of dielectric breakdown and prebreakdown in solid dielectrics[J]. Journal of Applied Physics, 1986, 60(5): 1770-1773.
[8] Quiña P L, Herrera L, Irurzun I M, et al. A capacitive model for dielectric breakdown in polymer materials[J]. Computational Materials Science, 2008, 44(2): 330-338.
[9] Tiemblo P, Hoyos M, Gómez-Elvira J M, et al. The development of electrical treeing in LDPE and its nanocomposites with spherical silica and fibrous and laminar silicates[J]. Journal of Physics D: Applied Physics, 2008, 41(12): 125208, 1-8.
[10] Huuva R, Englund V, Gubanski S M, et al. A versatile method to study electrical treeing in polymeric materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(1): 171-178.
[11] Samee A, Li Z H, Zhang C H, et al. Influence of silicon carbide composite barrier on electrical tree growth in cross linked polyethylene insulation[J]. Information Technology Journal, 2009, 8(3): 318-325.
[12] Danikas M G, Tanaka T. Nanocomposites—a review of electrical treeing and breakdown[J]. IEEE Electrical Insulation Magazine, 2009, 25(4): 19-25.
[13] El-Zein A, Talaat M, El Bahy M M. A numerical model of electrical tree growth in solid insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(6): 1724-1734.
[14] Gu C, Yan P, Zhang S C. Electrical treeing model in dielectric with barriers[J]. High Voltage Engineering, 2006, 32(7): 6-9. (in Chinese) 谷琛, 严萍, 张适昌. 嵌入屏障的绝缘介质中电树枝生长模型[J]. 高电压技术, 2006, 32(7): 6-9.
[15] Bergero P, Peruani F, Solovey G, et al. Dielectric breakdown model for conductor-loaded and insulator-loaded composite materials[J]. Physical Review: E, 2004, 69(1): 016123-1-016123-6.
[16] Peruani F, Solovey G, Irurzun I M, et al. Dielectric breakdown model for composite materials[J]. Physical Review E, 2003, 67(6): 066121-1-066121-6.
[17] Chen X R, Xu Y, Wang M, et al. Propagation and partial discharge characteristics of electrical trees in 110 kV XLPE cable insulation at high temperature[J]. High Voltage Engineering, 2012, 38(3): 645-654. (in Chinese) 陈向荣, 徐阳, 王猛, 等. 高温下110 kV交联聚乙烯电缆电树枝生长及局部放电特性[J]. 高电压技术, 2012, 38(3): 645-654.
[18] Xie N, Shao W Z, Feng L C, et al. Fractal analysis of disordered conductor-insulator composites with different conductor backbone structures near percolation threshold[J]. The Journal of Physical Chemistry C, 2012, 116(36): 19517-19525.
[19] Noskov M D, Kukhta V R, Lopatin V V. Simulation of the electrical discharge development in inhomogeneous insulators[J]. Journal of Physics D: Applied Physics, 1995, 28(6): 1187.
[20] Gu C, Yan P, Shao T, et al. Fractal simulation of breakdown in dielectric[J]. High Voltage Engineering, 2006, 32(1): 1-4. (in Chinese) 谷琛, 严萍, 邵涛, 等. 基于分形理论的电介质放电仿真计算[J]. 高电压技术, 2006, 32(1): 1-4.
[21] Zhang X T, Jia G H, Huang H. Numerical investigation of aluminum foam shield based on fractal theory and node-separation FEM[J]. Chinese Journal of Aeronautics, 2011, 24(6): 734-740.
[22] Matsutani S, Shimosako Y, Wang Y H. Fractal structure of equipotential curves on a continuum percolation model[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(23): 5802-5809.
[23] Chen G, Tham C. Electrical treeing characteristics in XLPE power cable insulation in frequency range between 20 and 500 Hz[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(1): 179-188.
[24] Fothergill J C, Dissado L A, Sweeney P J J. A discharge-avalanche theory for the propagation of electrical trees. A physical basis for their voltage dependence[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(3): 474-486.
/
〈 |
|
〉 |