新一代综合化航空电子系统构架技术研究
收稿日期: 2013-11-11
修回日期: 2014-01-23
网络出版日期: 2014-02-26
基金资助
国家“973”计划(2014CB744900);航空科学基金(20125552053)
Research on the Architecture Technology for New Generation Integrated Avionics System
Received date: 2013-11-11
Revised date: 2014-01-23
Online published: 2014-02-26
Supported by
National Basic Research Program of China (2014CB744900); Aeronautical Science Foundation of China (20125552053)
综合化航空电子系统根据应用的需求,基于已有的能力,采用综合技术,实现面向应用的任务合成,提升应用效能;面向能力的功能信息融合,提升能力品质;面向物理的操作模式综合,提升资源效率。针对新一代战机应用领域和战场作战的需求,围绕应用层面、能力层面和资源层面研究新一代综合化航空电子系统构架组成要素与建模技术,基于任务、功能、资源的生成与组织过程的分析,构建了面向现代战机不同任务目标、功能组织和系统能力的航空电子系统组织、实施构架,提出了分层的综合化航空电子系统构架——任务组织构架、功能组织构架和物理组织构架,实现了从应用空间-逻辑空间-物理空间信息处理的一致性,为新一代战机航空电子系统的综合化技术研究奠定了一定的技术基础。
王国庆 , 谷青范 , 王淼 , 张丽花 . 新一代综合化航空电子系统构架技术研究[J]. 航空学报, 2014 , 35(6) : 1473 -1486 . DOI: 10.7527/S1000-6893.2013.0533
Integrated avionics system is based on application requirement and its own ability, it adopts integration technology to realize the task synthesis facing to application for improving application efficiency; to realize the function information fusion facing to capability for improving capability quality; to realize operation mode integration facing to physical architecture. In this paper, aiming at new generation fight aircraft application scope and requirement of battlefield fight, around application layer, capability layer and resource layer for research on the constitution factor and modeling technology of new generation integration avionics architecture, based on the generation and organization process for task, function and resource analysis, we construct avionics system organization and operation architecture facing to different task objective, function organization and system ability of modern fight aircraft, propose hierarchy integration avionics system architecture-task organization architecture, function organization architecture and physical organization architecture, to realize the consistency among application space, logical space and physical space information dispose, and to establish the technology basis for integrated technology research of new generation fight aircraft avionics system.
[1] Prisaznuk P J. Integrated modular avionics//Aerospace and Electronics Conference, 1992: 39-45.
[2] Watkins C B, Walter R. Transitioning from federated avionics architectures to integrated modular avionics//Proceedings of IEEE the 26th Digital Avionics Systems Conference, 2007: 2.A.1-1-2.A.1-10.
[3] Zhou T R, Xiong H G. Design of energy-efficient hierarchical scheduling for integrated modular avionics systems[J]. Chinese Journal of Aeronautics, 2012, 25 (1): 109-114.
[4] Di N M, Sangiovanni-Vincentelli A L. Moving from federated to integrated architectures in automotive: the role of standards, methods and tools automotive electronics systems need to support an increasing number of features and functions. A new integrated architecture paradigm is needed to overcome the proliferation of electronic control units (ECUs) and allow integration of software components on distributed platforms [J]. Proceedings of the IEEE, 2010,98(4):603-620.
[5] Li X Y, Xiong H G. Modelling and simulation of integrated modular avionics systems//IEEE/AIAA 28th Digital Avionics Systems Conference, 2009: 7B3-1-7B3-8.
[6] Wang G Q. Integration technology for avionics system//IEEE/AIAA 31st Digital Avionics Systems Conference, 2012: 7C6-1-7C6-9.
[7] Nesrine B, Katia J, Jean L S, et al. End-to-end delay analysis in an integrated modular avionics architecture//IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), 2013: 1-4.
[8] Thom S, Richard A, Jarren B, et al. A viable COTS based wireless architecture for spacecraft avionics//2012 Aerospace Conference, 2012: 1-11.
[9] José R, Joo C, Paulo V. Building a time- and space-partitioned architecture for the next generation of space vehicle avionics//Proceedings of Software Technologies for Embedded and Ubiquitous Systems, 2010: 179-190.
[10] James W, Marie-Hélène D, Regis D. Integrated modular avionics for spacecraft-user requirements, architecture and role definition//IEEE/AIAA 30th Digital Avionics Systems Conference, 2011: 8A6-1-8A6-16.
[11] Wu J, Yue1 T, Ali S, et al. Ensuring safety of avionics software at the architecture design level: an industrial case study//IEEE 13th International Conference on Quality Software (QSIC), 2013: 55-64.
[12] Kevin M, Michael P, Reinhard S, et al. Mils-based information flow control in the avionics domain: a case study on compositional architecture and verification//IEEE/AIAA 31st Digital Avionics Systems Conference, 2012: 7B1-1-7B1-13.
[13] Yang S K, Liu B, Wang S H, et al. Model-based robustness testing for avionics-embedded software[J]. Chinese Journal of Aeronautics, 2013,26 (3): 730-740.
[14] Wang L, Liu B, Lu M Y. A modeling language based on UML for modeling simulation testing system of avionic software[J]. Chinese Journal of Aeronautics, 2011,24 (2): 181-194.
[15] Lin Q, Xiong H G, Zhang Q S. Credit determination of fibre channel in avionics environment[J]. Chinese Journal of Aeronautics,2007,20 (3): 247-252.
[16] Li Z, Li Q, Xiong H G. Avionics clouds: a generic scheme for future avionics systems//IEEE/AIAA 31st Digital Avionics Systems Conference, 2012: 6E4-1-6E4-10.
[17] Nowotsch J, Paulitsch M. Leveraging multi-core computing architectures in avionics//IEEE 9th European Dependable Computing Conference, 2012: 132-143.
[18] Fuchsen R. Preparing the next generation of IMA: a new technology for the Scarlett program//IEEE/AIAA Digital Avionics Systems Conference, 2009: 7B5-1-7B5-8.
[19] Annighofer B, Thielecke F. Multi-objective mapping optimization for distributed integrated modular avionics//IEEE/AIAA 31st Digital Avionics Systems Conference, 2012: 6B2-1-6B2-13.
[20] Wolfig R, Jakovljevic M. Distributed IMA and DO-297: architectural, communication and certification attributes//IEEE/AIAA 27th Digital Avionics Systems Conference, 2008: 1E4-1-1E4-10.
[21] Al-Nayeem A, Sun M. A formal architecture pattern for real-time distributed systems//IEEE 30th Real-Time Systems Symposium, 2009: 161-170.
[22] Robertson-Dunn B. Beyond the Zachman framework: problem-oriented system architecture[J]. IBM Journal of Research and Development, 2012, 56(5): 10: 1-10: 9.
[23] Dantu B, Smith E. Medical process modeling with a hybrid system dynamics Zachman framework[J]. Procedia Computer Science, 2011, 6: 76-81.
[24] Zhang C, Wang F. Construction of forestry e-government system based on Zachman frame theory//2011 International Conference on E-Business and E-Goverment, 2011: 1-4.
[25] Ostadzadeh S S, Habibi J, Ostadzadeh S A. A framework for decision support systems based on Zachman framework[M]//Khaled E. Advanced Techniques in Computing Sciences and Software Engineering. Netherlands: Springer, 2010: 497-502.
[26] Ostadzadeh S S, Rahmani A M. A framework for enterprise operating systems based on Zachman framework[M]//Tarek S, Khaled E. Innovations in Computing Sciences and Software Engineering. Netherlands: Springer, 2010: 533-536.
[27] Chen Z, Pooley R. Domain modeling for enterprise information systems-formalizing and extending Zachman framework using BWW ontology//2009 WRI World Congress on Computer Science and Information Engineering, 2009, 7: 634-643.
/
〈 |
|
〉 |