适用于直升机飞行力学分析的三维空间大气紊流模型
收稿日期: 2013-09-04
修回日期: 2014-02-13
网络出版日期: 2014-02-21
基金资助
中央高校基本科研业务费专项资金(NS201411)
A Model of Three-dimensional-field Atmospheric Turbulence for Helicopter Flight Dynamics Analysis
Received date: 2013-09-04
Revised date: 2014-02-13
Online published: 2014-02-21
Supported by
Fundamental Research Funds for the Central Universities (NS201411)
发展了一种新的适用于直升机飞行力学分析的三维空间大气紊流模型。采用Dryden紊流模型生成给定空间点的时域离散紊流速度,在速度坐标系框架下,横向和垂向采用统计特性守恒的高斯插值法进行紊流场空间扩展,而沿速度的纵向采用时间序列延迟法扩展紊流场,最终形成覆盖直升机各个气动面的三维空间大气紊流速度场。将本文计算结果和国外经过飞行仿真验证的二维空间紊流模型结果进行对比分析,验证本文模型的有效性和正确性,研究二维和三维空间紊流模型的区别。结果表明:本文模型改善了二维空间大气紊流模型对俯仰角速度、横向速度和航向角速度响应计算幅值偏小的缺陷;紊流引起的直升机响应幅值随飞行速度和紊流强度的增加而增大,随飞行高度的增加而减小。
吉洪蕾 , 陈仁良 , 李攀 . 适用于直升机飞行力学分析的三维空间大气紊流模型[J]. 航空学报, 2014 , 35(7) : 1825 -1835 . DOI: 10.7527/S1000-6893.2013.0540
In this paper, we develop a new three-dimensional-field turbulence model for helicopter flight dynamics analysis. The given points' discrete turbulence velocities in time domain are generated with the Dryden turbulence model and are expanded into a three-dimensional atmospheric turbulence field, which covers the helicopter's all aerodynamic components in the airspeed coordinate system, by the time transport delay method in the longitudinal airspeed direction and the Gaussian interpolation method, which keeps the turbulence's statistical properties, in the lateral and vertical directions. The model's calculation results obtained in this paper and the two-dimensional-field turbulence model's results, which are validated by a piloted simulation, are compared and analyzed to validate the accuracy and precision of the three-dimensional-field turbulence model, and the differences between the two-dimensional-field and the three-dimensional-field turbulence models are researched. The results show that the proposed model overcomes the two-dimensional-field turbulence model's disadvantages that the calculation values of pitching angle velocity, lateral velocity and course angular velocity are small; the amplitudes of helicopter response become bigger as flight speed or turbulence intensity increases, smaller as the turbulence scale increases.
[1] United States Department of Defense MIL-F-8785C. Military specification-flying qualities of piloted airplanes[S]. Washington, D.C.: United States Department of Defense, 1980.
[2] McFarland R E, Dulsenberg K. Simulation of rotor blade element turbulence, NASA TM-108862. Washington, D.C.: NASA, 1995.
[3] Dang Y Y, Gaonkar G H, Prasad J V R. Parallel methods for turbulence simulation and helicopter response prediction[J]. Journal of the American Helicopter Society, 1996, 41(3): 219-231.
[4] George V V, Gaonkar G H, Prasad J V R, et al. Adequacy of modeling turbulence and related effects on helicopter response[J]. AIAA Journal, 1992, 30(6): 1468-1479.
[5] Riaz J, Prasad J V R, Schrage D D, et al. Atmospheric turbulence simulation for rotorcraft applications[J]. Journal of the American Helicopter Society, 1993, 38(1): 84-88.
[6] Costello M, Gaonkar G H, Prasad J V R, et al. Some issues on modeling atmospheric turbulence experienced by helicopter rotor blades[J]. Journal of the American Helicopter Society, 1992, 37(2): 71-75.
[7] McFarland R E. Finite element aircraft simulation of turbulence, NASA TM-110437. Washington, D.C.: NASA, 1997.
[8] Dulsenberg K, McFarland R E. System and method for finite element simulation of helicopter turbulence: United States, ZL5860807. 1999-01-19.
[9] Lin H Q, Xu X Y. The resoponse of helicopter to the atmospheric turbulence[J]. Journal of Nanjing Aeronautical Institute, 1988, 20(1): 61-70. (in Chinese) 林河泉, 许心钰. 直升机对大气紊流的响应[J]. 南京航空学院学报, 1988, 20(1): 61-70.
[10] Yu J. Investigation of helicopter flight dynamics simulation and atmospheric turbulence response. Beijing: Beihang University, 1995. (in Chinese) 余江. 直升机飞行动力学仿真和大气紊流响应的研究. 北京: 北京航空航天大学, 1995.
[11] Pang J. Dynamic response to atmospheric disturbance in forward flight using a helicopter nonlinear model. Beijing: Beihang University, 2004. (in Chinese) 庞健. 基于直升机非线性模型的前飞状态大气扰动响应. 北京: 北京航空航天大学, 2004.
[12] Li P, Chen R L. Formulation and validation of a helicopter model for pull-up maneuver simulation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12): 2315-2322. (in Chinese) 李攀, 陈仁良. 直升机急拉杆机动飞行仿真建模与验证[J]. 航空学报, 2010, 31(12): 2315-2322.
[13] Li P. Rotor unsteady free-vortex wake model and investigation on high-fidelity modeling of helicopter flight dynamics. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese) 李攀. 旋翼非定常自由尾迹及高置信度直升机飞行动力学建模研究. 南京: 南京航空航天大学, 2010.
[14] Howlett J J. UH-60 black hawk engineering simulation program: Volume I-mathematical model, NASA CR-166309. Washington, D.C.: NASA, 1981.
[15] Kim F D. Formulation and validation of high-order mathematical models of helicopter flight dynamics. Maryland: College Park, University of Maryland, 2001.
[16] Pitt D M, Peters D A. Theoretical prediction of dynamic inflow derivatives[J]. Vertica, 1981, 5(1): 21-34.
[17] Peters D A, Ninh H Q. Dynamic inflow for pratical applications[J]. Journal of the American Helicopter Society, 1988, 33(4): 64-68.
[18] Bailey F J. A simplified theoretical method of determining the characteristics of a lifting rotor in forward flight, NASA TR-716. Washington, D.C.: NASA, 1941.
[19] Xiao Y L, Jin C J. Flight theory in atmosphere turbulence[M]. Beijing: National Defense Industry Press, 1993: 166-173. (in Chinese) 肖业伦, 金长江. 大气扰动中的飞行原理[M]. 北京: 国防工业出版社, 1993: 166-173.
[20] Shampine L F, Gordon M K. Computer solution of ordinary differential equations-the initial value problem[M]. SanFrancisco: W. H. Freeman & Co., 1976: 146-231.
[21] Balin M G. Validation of a real-time engineering simulation of the UH-60A helicopter, NASA-TM-88360. Washington, D.C.: NASA, 1987.
[22] Li X F, Zhou N, Fu Z Z, et al. Stochastic signal analysis[M]. Beijing: Publishing House of Electronics Industry,1993: 63-78. (in Chinese) 李晓峰, 周宁, 傅志忠, 等. 随机信号分析[M]. 北京: 电子工业出版社, 1993: 63-78.
/
〈 | 〉 |