材料工程与机械制造

基于动力学模型的飞机大部件调姿轨迹规划

  • 黄鹏 ,
  • 王青 ,
  • 李江雄 ,
  • 柯映林 ,
  • 张春山
展开
  • 1. 浙江大学 机械工程学系, 浙江 杭州 310027;
    2. 驻西飞军事代表室, 陕西 西安 710089
黄鹏 男,博士研究生。主要研究方向:飞机数字化装配、数据集成。E-mail:hp1981hp@sina.com;王青 男,博士,副教授。主要研究方向:飞机数字化装配、复杂装配系统集成。Tel:0571-87953927 E-mail:wqing@zju.edu.cn;李江雄 男,博士,教授,博士生导师。主要研究方向:飞机数字化装配技术及系统、机械CAD、反求工程、CAD建模技术及系统。E-mail:ljxiong@zju.edu.cn;柯映林 男,博士,教授,博士生导师。主要研究方向:先进制造工艺及装备技术、飞机数字化装配技术和系统、难加工材料加工。E-mail:ylke@zju.edu.cn;张春山 男,硕士,工程师。主要研究方向:飞机装配。E-mail:sxcszhang@sina.com

收稿日期: 2013-11-24

  修回日期: 2013-12-15

  网络出版日期: 2014-02-21

基金资助

国家自然科学基金(51375442);国家科技支撑计划项目(2011BAF13B12)

Adjustment Optimal Trajectory Planning of Aircraft Component Based on Dynamics Model

  • HUANG Peng ,
  • WANG Qing ,
  • LI Jiangxiong ,
  • KE Yinglin ,
  • ZHANG Chunshan
Expand
  • 1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
    2. The Military Representative Office of PLA Residing in Xi'an Aircraft Company, Xi'an 710089, China

Received date: 2013-11-24

  Revised date: 2013-12-15

  Online published: 2014-02-21

Supported by

National Natural Science Foundation of China (51375442); National Key Technology Research and Development Program of China (2011BAF13B12)

摘要

为了提高飞机调姿的运动安全并减小在误差敏感方向的冲击,采用Newton-Euler方法构建了调姿系统的动力学模型,以实现调姿轨迹的优化。该动力学模型综合考虑了支撑杆变形、驱动丝杆变形及运动误差的影响,可对比不同轨迹时部件运动全过程的运动学特性,实现多目标多约束条件下的轨迹优化。为了提高计算效率,提出了一种类间可分性最优的自适应核主成分算法进行特征提取,并结合模式识别中的自动分类方法,预判可行轨迹的性能,控制搜索范围,减少寻优过程中的计算量。以某型数控定位系统为例,在对150条可行调姿轨迹进行评价和优选后,大部件调姿过程的最大平动速度小于20 mm/s,调姿结束时的最大角速度小于0.1 rad/s,说明了该方法的可行性和有效性。

本文引用格式

黄鹏 , 王青 , 李江雄 , 柯映林 , 张春山 . 基于动力学模型的飞机大部件调姿轨迹规划[J]. 航空学报, 2014 , 35(9) : 2672 -2682 . DOI: 10.7527/S1000-6893.2013.0525

Abstract

To improve the safety and reduce the impact on the sensitive direction in an aircraft component trajectory adjustment system, the trajectory of a large component is optimized by a dynamics model of the adjustment system. This model is derived by the Newton-Euler method, and takes into account the rod deformation, screw movement error and deformation in the NC locator. It can evaluate the kinematic characteristics of the component with different movement trajectories. In order to improve the efficiency and reduce the amount of computation in the optimization process, an adaptive kernel principal component analysis algorithm with optimal separability between classes is proposed in combination with pattern recognition methods to predict the performance of feasible trajectories to control the scope of the search. The effectiveness of the proposed method is verified by an example of an adjustment system. After evaluation of 150 feasible trajectories, the maximum translational velocity of the large component during the adjustment process is less than 20 mm/s, and the maximum angular velocity at the end of the adjustment process is less than 0.1 rad/s.

参考文献

[1] Liu S L, Luo Z G, Tan G S, et al. 3D measurement and quality evaluation for complex aircraft assemblies[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 409-418. (in Chinese) 刘胜兰, 罗志光, 谭高山, 等. 飞机复杂装配部件三维数字化综合测量与评估方法[J]. 航空学报, 2013, 34(2): 409-418.

[2] Zhu X S, Zheng L Y, Multiple-objective optimization algorithm based on key assembly characteristics to posture best fit for large component assembly[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1726-1736. (in Chinese) 朱绪胜, 郑联语. 基于关键装配特性的大型零部件最佳装配位姿多目标优化算法[J]. 航空学报, 2012, 33(9): 1726-1736.

[3] Chen Z H, Du F Z, Tang X Q. Key measurement characteristics based inspection data modeling for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2143-2152. (in Chinese) 陈哲涵, 杜福洲, 唐晓青. 基于关键测量特性的飞机装配检测数据建模研究[J]. 航空学报, 2012, 33(11): 2143-2152.

[4] Ata A A. Optimal trajectory planning of manipulators: a review[J]. Journal of Engineering Science and Technology, 2007, 2(1): 32-54.

[5] Zhu S Q, Liu S G, Wang X Y, et al. Time-optimal and jerk-continuous trajectory planning algorithm for manipulators[J]. Chinese Journal of Mechanical Engineering, 2010, 46(3): 47-52. (in Chinese) 朱世强, 刘松国, 王宣银, 等. 机械手时间最优脉动连续轨迹规划算法[J]. 机械工程学报, 2010, 46(3): 47-52.

[6] Zhang J Y, Liu T. Optimized path planning of mobile robot based on artificial potential field[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(Sup.): S183-S188. (in Chinese) 张建英, 刘暾. 基于人工势场法的移动机器人最优路径规划[J]. 航空学报, 2007, 28(增刊): S183-S188.

[7] Zhang B, Fang Q, Ke Y L. Optimal time trajectory planning method for a kind of posture aligning system of large rigid bodies[J]. Chinese Journal of Mechanical Engineering, 2008, 44(8): 248-252. (in Chinese) 张斌, 方强, 柯映林. 大型刚体调姿系统最优时间轨迹规划[J]. 机械工程学报, 2008, 44(8): 248-252.

[8] Xu H L, Xie X R, Zhuang J, et al. Global time-energy optimal planning of industrial robot trajectories[J]. Chinese Journal of Mechanical Engineering, 2010, 46(9): 19-25. (in Chinese) 徐海黎, 解祥荣, 庄健, 等. 工业机器人的最优时间与最优能量轨迹规划[J]. 机械工程学报, 2010, 46(9): 19-25.

[9] Xu X D, Huang P F, Meng Z J, et al. Space tethered robot optimal trajectory planning for medium approaching range based on velocity impulse[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1531-1539. (in Chinese) 徐秀栋, 黄攀峰, 孟中杰, 等. 基于速度增量的空间绳系机器人中距离逼近过程最优轨迹规划[J]. 航空学报, 2012, 33(8): 1531-1539.

[10] Zhu Y G, Huang X, Fang W, et al. Trajectory planning algorithm based on quaternion for 6-DOF aircraft wing automatic position and pose adjustment method[J]. Chinese Journal of Aeronautics, 2010, 23(6): 707-714.

[11] Xu Q, Li Y. Error analysis and optimal design of a class of translational parallel kinematic machine using particle swarm optimization[J]. Robotica, 2009, 27(1): 67-78.

[12] Ying Z, Zhang M, Wang Q, et al. Modeling and simulation of wear for alignment mechanism of large aircraft component[J]. Journal of Zhejiang University: Engineering Science, 2013, 47(2): 209-215. (in Chinese) 应征, 章明, 王青, 等. 飞机大部件调姿机构磨损预测模型的构建与仿真[J]. 浙江大学学报: 工学版, 2013, 47(2): 209-215.

[13] Yen P L, Lai C C. Dynamic modeling and control of a 3-DOF Cartesian parallel manipulator[J]. Mechatronics, 2009, 19(3): 390-398.

[14] Guo Z H, Chen W Y, Chen D C. Dynamics model on the 6-UPS parallel mechanism[J]. Chinese Journal of Mechanical Engineering, 2002, 38(11): 53-57. (in Chinese) 郭祖华, 陈五一, 陈鼎昌. 6-UPS型并联机构的刚体动力学模型[J]. 机械工程学报, 2002, 38(11): 53-57.

[15] Ling Z R, Hu R L, Chen G, et al. GB/T 17421.2-2000 Test code for machine tools——Part 2: Determination of accuracy and repeatability of positioning numerically controlled axes[S]. Beijing: Standards Press of China, 2000.(in Chinese) 凌泽润, 胡瑞琳, 陈高, 等. GB/T 17421.2-2000, 机床检验通则: 数控轴线的定位精度和重复定位精度的确定[S]. 北京: 中国标准出版社, 2000.

[16] Kaieda K, Abe S. KPCA-based training of a kernel fuzzy classifier with ellipsoidal regions[J]. International Journal of Approximate Reasoning, 2004, 37(3): 189-217.

[17] Teixeira A R, Tomé A M, Stadlthanner K, et al. KPCA denoising and the pre-image problem revisited[J]. Digital Signal Processing, 2008, 18(4): 568-580.

[18] Mika S, Schölkopf B, Smola A J, et al. Kernel PCA and de-noising in feature spaces[C]//Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems. Cambridge: MIT Press, 1999: 536-542.

[19] THK. Product technical description of linear motion systems of THK A[M]. Tokyo: THK, 2006: 707.(in Chinese) THK. 直线运动系统产品技术说明 A[M]. 东京: THK, 2006: 707.

文章导航

/