电子与控制

考虑扰动及控制饱和的多约束末制导方法

  • 董晨 ,
  • 晁涛 ,
  • 王松艳 ,
  • 杨明
展开
  • 哈尔滨工业大学 控制与仿真中心, 黑龙江 哈尔滨 150080
董晨男,博士研究生。主要研究方向:飞行器制导、控制与仿真。E-mail:chendong@hit.edu.cn;晁涛男,博士,讲师。主要研究方向:飞行器制导、控制与仿真,制导控制性能评估。E-mail:chaotao2000@163.com;王松艳女,博士,副教授。主要研究方向:飞行器制导、控制与仿真。E-mail:sywang@hit.edu.cn;杨明男,博士,教授,博士生导师。主要研究方向:飞行器制导与控制,复杂系统建模与仿真。Tel:0451-86418236,E-mail:myang@hit.edu.cn

收稿日期: 2013-11-11

  修回日期: 2014-01-23

  网络出版日期: 2014-02-10

基金资助

国家自然科学基金委创新研究群体科学基金(61021002);中央高校基本科研业务费专项资金(HIT.NSRIF.2014036);重点实验室开放基金(HIT.KLOF.2013081)

Terminal Guidance Method with Multiple Constraints in the Presence of Disturbances and Control Saturation

  • DONG Chen ,
  • CHAO Tao ,
  • WANG Songyan ,
  • YANG Ming
Expand
  • Control and Simulation Center, Harbin Institute of Technology, Harbin 150080, China

Received date: 2013-11-11

  Revised date: 2014-01-23

  Online published: 2014-02-10

Supported by

Innovative Team Program of the National Natural Science Foundation of China (61021002); the Fundamental Research Funds for the Central Universities (HIT.NSRIF.2014036); the Opening Funding of the National Key Laboratory of Science and Technology (HIT.KLOF.2013081)

摘要

在末制导阶段,飞行器受到建模误差、风、目标运动等多种扰动的影响,且导引头视场、攻角及落角受到约束。为此,提出一种多约束及扰动下的末制导方法。将制导问题转化为存在扰动与控制饱和的系统的镇定问题。设计低增益状态反馈律镇定系统,利用线性扩张状态观测器观测系统中的扰动并在反馈律中对其进行补偿。以此为基础推导得到末制导律。基于Lambert W函数研究制导律参数对视线角收敛的影响,并提出制导律参数的自适应整定方法。通过在线调整制导律参数,保证全部约束得到满足。在多种扰动下,通过数值仿真验证提出的制导方法。仿真结果表明,制导律满足所有约束且获得的制导精度较高。

本文引用格式

董晨 , 晁涛 , 王松艳 , 杨明 . 考虑扰动及控制饱和的多约束末制导方法[J]. 航空学报, 2014 , 35(8) : 2225 -2233 . DOI: 10.7527/S1000-6893.2013.0531

Abstract

In the terminal guidance phase, a vehicle is subject to various disturbances, such as modeling error, wind, and target movement. Moreover, the seeker's field-of-view, attack angle, and impact angle are constrained. To guide the vehicle under these conditions, a guidance method under multiple constraints and disturbances is proposed. The guidance problem is transformed to a stabilization problem of a system with control saturation and disturbance. A low-gain state feedback law with disturbance compensation is designed to stabilize the system, and a linear extended state observer is used to estimate the disturbance. Then, a terminal guidance law is derived. Using Lambert W function, effects of the guidance law parameters on the convergence of the line-of-sight angle are investigated. Moreover, an adaptive parameter regulation method is presented to adjust the guidance law parameters online. The proposed guidance method is demonstrated by numerical simulation under various disturbances. All the constraints are observed and high guidance precision is achieved.

参考文献

[1] Cai H, Hu Z D, Cao Y. A survey of guidance law with terminal impact angle constraints[J]. Journal of Astronautics, 2010, 31(2): 315-323. (in Chinese) 蔡洪, 胡正东, 曹渊. 具有终端角度约束的导引律综述[J]. 宇航学报, 2010, 31(2): 315-323.

[2] Ratnoo A, Ghose D. Impact angle constrained guidance against nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 269-275.

[3] Erer K S, zgren M K. Control of impact angle using biased proportional navigation, AIAA-2013-5113. Reston: AIAA, 2013.

[4] Lee J I, Jeon I S, Tahk M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 301-310.

[5] Zhang Y A, Huang J, Sun Y P. Generalized weighted optimal guidance laws with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 848-856. (in Chinese) 张友安, 黄诘, 孙阳平. 带有落角约束的一般加权最优制导律[J]. 航空学报, 2014, 35(3): 848-856.

[6] Hu Z D, Cao Y, Cai H. Variable structure guidance law of reentry maneuvering warhead with terminal angular constraint[J]. Systems Engineering and Electronics, 2009, 31(2): 393-398. (in Chinese) 胡正东, 曹渊, 蔡洪. 带落角约束的再入机动弹头的变结构导引律[J]. 系统工程与电子技术, 2009, 31(2): 393-398.

[7] Harl N, Balakrishnan S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449.

[8] Lin B, Meng X Y, Liu Z Z. Design of the robust guidance law with terminal angle constraint[J]. Systems Engineering and Electronics, 2005, 27(11): 1943-1945. (in Chinese) 林波, 孟秀云, 刘藻珍. 具有末端角约束的鲁棒制导律设计[J]. 系统工程与电子技术, 2005, 27(11): 1943-1945.

[9] Guo J G, Zhou J. Design of H guidance law with terminal angle constraint[J]. Fire Control & Command Control, 2009, 34(12): 44-46. (in Chinese) 郭建国, 周军. 具有终端角度约束的H制导律设计[J]. 火力与指挥控制, 2009, 34(12): 44-46.

[10] Hu Z D, Guo C F, Cai H. Integrated guidance law of reentry maneuvering warhead with terminal angular constraint[J]. Journal of National University of Defense Technology, 2008, 30(3): 21-26. (in Chinese) 胡正东, 郭才发, 蔡洪. 带落角约束的再入机动弹头的复合导引律[J]. 国防科技大学学报, 2008, 30(3): 21-26.

[11] Xin M, Balakrishnan S N, Ohlmeyer E J. Guidance law design for missiles with reduced seeker field-of-view, AIAA-2006-6085. Reston: AIAA, 2006.

[12] Sang D, Ryoo C K, Song K R, et al. A guidance law with a switching logic for maintaining seeker's lock-on for stationary targets, AIAA-2008-6497. Reston: AIAA, 2008.

[13] Gu J L, Chen W C. Homing guidance with look angle and impact angle constraints[J]. Journal of Astronautics, 2013, 34(6): 782-787. (in Chinese) 顾家立, 陈万春. 一种带导引头视角和落角约束的导引方法[J]. 宇航学报, 2013, 34(6): 782-787.

[14] Vinh N X. Optimal trajectories in atmospheric flight[M]. New York: Elsevier Scientific Software, 1981: 26-27.

[15] Zhou D, Sun S, Teo K L. Guidance laws with finite time convergence[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6): 1838-1846.

[16] Xu Z C, Wang Z S, Wang Y J. Optimal control of nonlinear system based on linear extended state observer//Proceedings of the 30th Chinese Control Conference, 2011: 97-101. (in Chinese) 许志才, 王志燊, 王永骥. 基于线性扩张状态观测器的非线性系统最优控制//第30届中国控制会议, 2011: 97-101.

[17] Lin Z L, Saberi A. Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedbacks[J]. Systems & Control Letters, 1995, 24(2): 125-132.

[18] Zhou B, Duan G R, Lin Z L. A parametric Lyapunov equation approach to the design of low gain feedback[J]. IEEE Transactions on Automatic Control, 2008, 53(6): 1548-1554.

[19] Corless R M, Gonnet G H, Hare D E G, et al. On the Lambert W-function[J]. Advances in Computational Mathematics, 1996, 5(4): 329-359.

文章导航

/