流体力学与飞行力学

地效对二维气动弹性特性的影响

  • 张斌 ,
  • 徐敏 ,
  • 谢亮
展开
  • 西北工业大学 航天学院, 陕西 西安 710072
张斌男,硕士研究生。主要研究方向:气动弹性力学和弹性飞行器飞行力学。,E-mail:arctanx2@gmail.com;徐敏女,博士,教授,博士生导师。主要研究方向:气动弹性、多力学场耦合问题。Tel:029-88494614,E-mail:xumin@nwpu.edu.cn;谢亮男,博士研究生。主要研究方向:计算流体力学与气动弹性力学。,E-mail:jjccblws02@163.com

收稿日期: 2013-10-16

  修回日期: 2013-12-23

  网络出版日期: 2014-01-20

Influence on Two Dimensional Aeroelastic Characteristics in Ground Effect

  • ZHANG Bin ,
  • XU Min ,
  • XIE Liang
Expand
  • College of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-10-16

  Revised date: 2013-12-23

  Online published: 2014-01-20

摘要

为研究地面效应对飞行器的气动弹性特性的影响,基于计算流体力学(CFD),耦合求解结构动力学方程,建立了气动弹性求解系统。通过涡诱导的圆柱自由振荡算例和Isogai的二元气动弹性算例,分别研究了地面效应对气动弹性动态响应和颤振边界的影响。研究结果表明:在地效作用下,涡街的对称性及发展受到影响,圆柱的动态响应幅值减小,频率增加,越靠近地面影响越显著;地效作用下,二维翼型在亚声速阶段的颤振速度下降,跨声速阶段,颤振边界凹坑范围扩大,颤振速度与激波位置密切相关。

本文引用格式

张斌 , 徐敏 , 谢亮 . 地效对二维气动弹性特性的影响[J]. 航空学报, 2014 , 35(8) : 2156 -2162 . DOI: 10.7527/S1000-6893.2013.0504

Abstract

To study the influence of ground effect on the aeroelastic characteristics of an aircraft, an aeroelastic solver coupling with computational fluid dynamics (CFD) and a structural dynamics solver is developed. Then the influences of ground effect on aeroelastic dynamic response and flutter boundary are investigated through a vortex-induced oscillating cylinder and Isogai's two dimensional aeroelastic cases. The results indicate that, in ground effect, the symmetry and development of the vortex street is constrained, thus the dynamic response amplitude of the cylinder decreases and the frequency increases. The ground effect is greater as the models move near the ground. In ground effect, the flutter speed of the airfoil decreases in the subsonic region; In transonic region, the dip is enlarged and the flutter velocity is closely related with the position of shock waves.

参考文献

[1] Yue T, Wang L X. A study on longitudinal stability and configuration characteristics of wing-in-ground effect craft[J]. Flight Dynamics, 2007, 25(3): 5-8. (in Chinese) 乐挺, 王立新. 地效飞机的纵向稳定性和气动布局特点研究[J]. 飞行力学, 2007, 25(3): 5-8.

[2] Guo B D, Qu Q L, Liu P Q, et al. Ditching performance of silent aircraft SAX-40 in hybrid wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 35(11): 2443-2451. (in Chinese) 郭保东, 屈秋林, 刘沛清, 等. 混合翼身布局客机SAX-40水上迫降力学性能数值研究[J]. 航空学报, 2013, 35(11): 2443-2451.

[3] Frsching H W. Grundlagen der aeroelastik[M]. Shen K Y, translated. Shanghai: Scientific and Technical Documentation Press, 1982: 160-168. (in Chinese) Frsching H W. 气动弹性力学原理[M]. 沈克扬, 译. 上海: 科学技术文献出版社, 1982: 160-168.

[4] Han B, Xu M, Cai T X, et al. Numerical simulation of vertical tail buffeting indeced by vortex breakdown[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 788-795. (in Chinese) 韩冰, 徐敏, 蔡天星, 等. 涡破裂诱导的垂尾抖振数值模拟[J]. 航空学报, 2012, 33(5): 788-795.

[5] Qu Q L, Liu P Q. Numerical simulation and analysis of aerodynamics of WIG craft in cruise over ground[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(1): 16-22. (in Chinese) 屈秋林, 刘沛清. 地效飞行器地面巡航气动性能数值模拟及分析[J]. 航空学报, 2006, 27(1): 16-22.

[6] Rozhdestvensky K V. Wing-in-ground effect vehicles[J]. Progress in Aerospace Sciences, 2006, 42(3): 211-283.

[7] Nuhait A O, Mook D T. Aeroelastic behavior of flat plates moving near the ground[J]. Journal of Aircraft, 2010, 47(2): 464-474.

[8] Xu M, An X M, Chen S L. CFD/CSD couping numerical computational methodology[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(1): 33-37. (in Chinese) 徐敏, 安效民, 陈士橹. 一种CFD/CSD耦合计算方法[J]. 航空学报, 2006, 27(1): 33-37.

[9] Yan C. Computational fluid dynamics method and application[M]. Beijing: Beihang University Press, 2006: 15-30. (in Chinese) 阎超. 计算流体力学方法及应用[M]. 北京: 北京航空航天大学出版社, 2006: 15-30.

[10] Zeng X A. Studies of model reduction technique for aeroelasticity. Xi'an: Northwestern Polytechnical University, 2008. (in Chinese) 曾宪昂. 模型降阶技术在气动弹性中的应用研究. 西安: 西北工业大学, 2008.

[11] Isogai K. On the transonic-dip mechanism of flutter of a sweptback wing[J]. AIAA Journal. 1979, 7(17): 793-795.

[12] Isogai K. Transonic dip mechanism of flutter of a swept-back wing: Part Ⅱ[J]. AIAA Journal, 1981, 9(19): 1240-1242.

[13] Griffin O M. Vortex-induced vibrations of marine structures in uniform and sheared currents//NSF Work-shop on Riser Dynamics, 1992: 152-157.

[14] Morton S A, Melville R B, Visbal M R. Accuracy and coupling issues of aeroelastic Navier-Stokes solutions on deforming meshes[J]. Journal of Aircraft, 1998, 5(35): 798-805.

[15] Blackburn H M, Karniadakis G E. Two and three-dimensional simulations of vortex-induced vibration of a circular cylinder//3rd International Society of Off-shore & Polar Engineers Conference, 1993, 3: 715-720.

[16] Alonso J, Martinelli L, Jameson A. Multigrid unsteady Navier-Stokes calculations with aeroelastic applications, AIAA-1995-0048. Reston: AIAA, 1995.

[17] Bendiksen O O, Kousen K A. Transonic flutter analysis using the Euler equations, AIAA-1987-0911. Reston: AIAA, 1987.

[18] Prananta B B, Hounjet M H L, Zwaan R J. Two-dimensional transonic aeroelastic analysis using thin-layer Navier-Stokes method[J]. Journal of Fluid and Structures. 1998, 12(6): 655-676.

[19] Bohbot J, Garnier J. Computation of the flutter boundary of an airfoil with a parallel Navier-Stokes solver, AIAA-2001-0572. Reston: AIAA, 2001.

文章导航

/