材料工程与机械制造

温度条件对碳纤维上浆剂与双马树脂反应及其复合材料界面粘结的影响

  • 朱明明 ,
  • 李敏 ,
  • 武清 ,
  • 顾轶卓 ,
  • 张佐光
展开
  • 北京航空航天大学 材料科学与工程学院, 北京 100191
朱明明 女,硕士研究生。主要研究方向:树脂基复合材料。Tel:010-82317104 E-mail:zmm201109@163.com;李敏 女,博士,副教授,博士生导师。主要研究方向:高性能碳纤维/树脂作用机制与界面性能,碳纳米管纤维/巴基纸复合材料,复合材料先进制造与工艺优化。Tel:010-82339800 E-mail:leemy@buaa.edu.cn;武清 女,博士研究生。主要研究方向:树脂基复合材料界面。Tel:010-82338735 E-mail:wuqing52157@163.com;顾轶卓 男,博士,副教授。主要研究方向:先进树脂基复合材料。Tel:010-82339575 E-mail:benniegu@buaa.edu.cn;张佐光 男,博士,教授,博士生导师。主要研究方向:先进树脂基复合材料,功能复合材料与高分子材料。Tel:010-82339800 E-mail:zgzhang@buaa.edu.cn

收稿日期: 2013-10-30

  修回日期: 2013-12-29

  网络出版日期: 2014-01-16

基金资助

国家自然科学基金(51273007);新世纪优秀人才支持计划

Effect of Temperature on Reactions of Carbon Fiber Sizing Agent with Bismaleimide and Their Composite Interfacial Adhesion

  • ZHU Mingming ,
  • LI Min ,
  • WU Qing ,
  • GU Yizhuo ,
  • ZHANG Zuoguang
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2013-10-30

  Revised date: 2013-12-29

  Online published: 2014-01-16

Supported by

National Natural Science Foundation of China (51273007); Program for New Century Excellent Talents in University

摘要

为了研究工艺温度对复合材料界面的调控作用,设计采用三阶段固化工艺(即扩散、固化和后固化),考察了不同温度制度下3种碳纤维/双马树脂(BMI)复合材料界面粘结性能的变化规律。采用原子力显微镜(AFM)和傅里叶变换红外光谱(FTIR)深入分析了上浆剂对纤维表面粗糙度和化学特性的影响,研究了上浆剂的反应活性及其与双马树脂的反应性,采用微珠脱粘方法测试了碳纤维/树脂的界面剪切强度(IFSSs)。结果表明,200 ℃处理2 h后3种碳纤维上浆剂均发生部分反应,并且170 ℃,2 h后上浆剂均与双马树脂发生化学反应。对比不同温度条件可以发现后固化阶段对碳纤维/双马体系的界面剪切强度影响显著,未经后固化的复合材料界面性能最低;110 ℃和140 ℃恒温扩散阶段对碳纤维/双马体系的界面剪切强度的影响不明显。同种温度条件下,CF1和CF3上浆剂与双马树脂的反应程度高于CF2,相应的CF1和CF3与双马树脂的界面剪切强度较高,表明上浆剂与双马树脂间的化学反应程度是影响其界面粘结性能的主要因素。该研究结果对我国碳纤维上浆剂的研制具有参考价值。

本文引用格式

朱明明 , 李敏 , 武清 , 顾轶卓 , 张佐光 . 温度条件对碳纤维上浆剂与双马树脂反应及其复合材料界面粘结的影响[J]. 航空学报, 2014 , 35(9) : 2624 -2631 . DOI: 10.7527/S1000-6893.2013.0507

Abstract

In order to study the effect of processing temperature on the regulating function of composite interface, three-stage curing processes of diffusion, cure and post cure are designed, and the interfacial adhesion variation is investigated of three carbon fibers/bismaleimide (BMI) composites under different processing temperatures. In-depth analysis of sizing agent on fiber surface roughness and chemical properties is carried out by AFM and FTIR, the chemical reactivity of sizing agent and the chemical reactions between sizing agent and BMI are studied, and the interfacial shear strengths (IFSSs) of carbon fiber/BMI are measured by micro-droplet. The results show that all the sizings partially react at 200 ℃, and chemical reactions take place between the sizing agent and BMI after 2 h treatment at 170 ℃. Comparing different temperature processes, the post-cure stage is found to have greater effect on the IFSSs of carbon fiber/BMI, and the temperature scheme without the post-cure stage shows the lowest values of IFSS. The diffusion stage of 110 ℃ and 140 ℃ has little effect on IFSSs. Under the same temperature, the reaction degree between CF1 and CF3 sizing agent with BMI is higher than that of CF2, and the corresponding IFSSs of CF1 and CF3 with BMI are higher than that of CF2, indicating that the chemical reaction degree between sizing agent and BMI is a main factor in controlling the interfacial adhesion. These research results may provide reference for the development of carbon fiber sizing.

参考文献

[1] Hughes J D H. The carbon fiber/epoxy interface—a review[J]. Composites Science and Technology, 1991, 41(1): 13-45.
[2] Raghavendran V K, Drzal L T, Askeland P. Effect of surface oxygen content and roughness on interfacial adhesion in carbon fber-polycarbonate composites[J]. Journal of Adhesion Science and Technology, 2002, 161(10): 1283-1306.
[3] Pamula E, Rouxhet P G. Bulk and surface chemical functionalities of type Ⅲ PAN-based carbon fibres[J]. Carbon, 2003, 41(10): 1905-1915.
[4] Nishikawa M, Okabe T, Takeda N. Determination of interface properties from experiments on the fragmentation process in single-fiber composites[J]. Materials Science and Engineering, 2008, 480(1-2): 549-557.
[5] Drzal L T, Rich M J, Lioyd P F. Adhesion of graphite fibers to epoxy matrices: I. The role of fiber surface treatment[J]. The Journal of Adhesion, 1983, 16(1): 1-30.
[6] Tomonoh S, Sawanobori T. Fiber-matrix adhesion mechanism of pitch-based carbon fiber composites[J]. Composite Interfaces, 1993, 1(2): 113-125.
[7] Kim K Y, Ye L. Interlaminar fracture toughness of CF/PEI composites at elevated temperatures: roles of matrix toughness and fibre/matrix adhesion[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(4): 477-487.
[8] Hojo M, Matsushita Y, Tanaka M, et al. Interfacial fatigue crack propagation in microscopic model composite using bifiber shear specimens[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(2): 239-246.
[9] Xu Z W, Li J L, Wu X Q, et al. Effect of kidney-type and circular cross sections on carbon fiber surface and composite interface[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(2): 301-307.
[10] Guo H, Huang Y D, Liu L, et al. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites[J]. Materials and Design, 2010, 31(3): 1186-1190.
[11] Drzal L T, Sugiura N, Hook D. The role of chemical bonding and surface topography in adhesion between carbon fibers and epoxy matrices[J]. Composite Interfaces, 1996, 4(5): 337-354.
[12] Cheng T H, Zhang J, Yumitor S, et al. Sizing resin structure and interphase formation in carbon fibre composites[J]. Composites, 1994, 25(7): 661-670.
[13] Jones F R. A review of interphase formation and design in fibre-reinforced composites[J]. Journal of Adhesion Science and Technology, 2010, 24(1): 171-202.
[14] Zhang R L, Huang Y D, Su D, et al, Influence of sizing molecular weight on the properties of carbon fibers and its composites[J]. Materials and Design, 2012, 34: 649-654.
[15] Cao X, Wen Y F, Zhang S C, et al. A heat-resistant emulsifying sizing agent for carbon fibers[J]. New Carbon Materials, 2006, 21(4): 337-342.
[16] Upadhyaya D, Tsakiropoulos P. Evaluation of the effect of sizing levels on transverse flexural and shear strengths of carbon/epoxy composites[J]. Journal of Materials Processing Technology, 1995, 54(1): 17-20.
[17] Mader E, Gao S L, Plonka R. Static and dynamic properties of single and multi-fiber/epoxy composites modified by sizings[J]. Composites Science and Technology, 2007, 67(6): 1105-1115.
[18] Dai Z S, Zhang B Y, Shi F H, et al. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science, 2011, 257(20): 8457-8461.
[19] Yumitor S, Wang D, Jones F R. The role of sizing resins in carbon fibre-reinforced polyethersulfone (PES)[J]. Composites, 1994, 25(7): 698-705.
[20] Bradley R H, Ling X, Sutherland I. An investigation of carbon fiber surface chemistry and reactivity based on XPS and surface free energy[J]. Carbon, 1993, 31(7): 1115-1120.
[21] Dilsiz N, Wightman J P. Surface analysis of unsized and sized carbon fibers[J]. Carbon, 1999, 37(7): 1105-1114.
[22] Zhou J H, Sui Z J, Zhu J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785-796.
文章导航

/