圆柱坐标数控机床加工整体叶轮的运动学分析
收稿日期: 2013-10-12
修回日期: 2013-11-04
网络出版日期: 2014-01-16
基金资助
高等学校博士点专项科研基金(20111102110021);中航工业技术创新基金(2010E37220)
Kinematic Analysis of Cylindrical Coordinate CNC Machine in Integral Impeller Machining
Received date: 2013-10-12
Revised date: 2013-11-04
Online published: 2014-01-16
Supported by
Specialized Research Fund for the Doctoral Program of Higher Education (20111102110021);Technological Innovation Fund of Aviation Industry Corporation of China (2010E37220)
为研究一种叶轮加工的新方法,使其能够提高叶轮加工时机床的刚性,并且降低叶轮加工的成本。从机构学角度提出并分析了一种用于整体叶轮三轴联动数控加工的机床模型和运动模型。该机床由2个线性轴和1个转动轴组成,称为圆柱坐标数控机床。另外,该机床具有2个辅助轴用于调整主轴姿态,且加工过程中上述两轴被锁紧。通过遍历待加工叶轮叶片上选择的采样点,可寻找每个采样点对应的主轴姿态可行域空间,并可在所有可行域的基础上求解公共的可行域,进而可在此公共可行域中确定机床主轴的姿态。使用提出的算法求解该数控机床加工叶轮的运动,并在VERICUT软件中对某一叶轮进行了加工仿真以验证该圆柱坐标数控机床模型和相关算法。对于此叶轮,求出的机床可行的B'的值在之间,对应的C'的值在之间,使用圆环面刀具计算刀轨后在VERICUT中进行仿真,仿真结果表明95%的加工区域的欠切量在0.02 mm以内,即此方法可用于叶轮加工。使用该新型圆柱坐标数控机床加工叶轮的方案是可行的,且具有工业应用价值。
朱燏 , 宁涛 , 陈志同 . 圆柱坐标数控机床加工整体叶轮的运动学分析[J]. 航空学报, 2014 , 35(8) : 2364 -2374 . DOI: 10.7527/S1000-6893.2013.0508
The purpose of this study is to research a new impeller machining method that can improve a machine tool's rigidity and reduce its machining cost. This paper presents and analyzes the structure model and kinematic configuration of a novel machine tool from the viewpoint of mechanism. The machine tool, which is called a cylindrical coordinate CNC machine, consists of two linear motion axes, one rotational axis and two auxiliary axes used to adjust the spindle's posture, which are fixed during machining. By traversing every sampling point selected from an impeller's blade, the corresponding feasible region of the spindle's posture can be found in each sampling point. The common feasible region is obtained based on all these feasible regions. Then the spindle's posture can be confirmed in this common feasible region. The motion of the CNC machine is calculated by using the proposed algorithm to machine impellers. And the simulation of an impeller's machining is completed in software VERICUT to verify the cylindrical coordinate CNC machine and the relevant algorithm. For this impeller, the feasible value of the machine tool's B' is between -5° and 9°, the relevant value of C' is between -3° and 3°. The torus is used to calculate the cutter path which is simulated in VERICUT. The simulation result shows that, 95% of the machining region's undercut is less than 0.02 mm, which means this method is useful in impeller machining. It is believed that this methodology of using the novel cylindrical coordinate CNC machine for impeller manufacturing is workable and valuable in the manufacturing industry.
Key words: impellers; machine tool; cylinder configuration; kinematics; feasible region
[1] Chen H H, Liu H M, Sun C H. Development status of abroad and domestic NC manufacturing technology for impeller[J]. Aerospace Manufacturing Technology, 2002(2): 45-48. (in Chinese) 陈晧辉, 刘华明, 孙春华. 国内外叶轮数控加工发展现状[J]. 航天制造技术, 2002(2): 45-48.
[2] Heo E Y, Kim D W, Kim B H, et al. Efficient rough-cut plan for machining an impeller with 5-axis NC machining[J]. International Journal of Computer Integrated Manufacturing, 2008, 21(8): 971-983.
[3] Morishige K, Takeuchi Y. 5-Axis control rough cutting of an impeller with efficiency and accuracy//Proceedings of the 1997 IEEE International Conference on Robotics and Automation Albuquerque. New Mexico: IEEE, 1997: 1241-1246.
[4] Young H T, Chuang L C. An integrated machining approach for a centrifugal impeller[J]. The International Journal of Advanced Manufacturing Technology, 2003, 21(8): 556-563.
[5] Chuang L C, Young H T. Integrated rough machining methodology for centrifugal impeller manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2007, 34(11-12): 1062-1071.
[6] Fan H Z, Wang W, Xi G. A novel five-axis rough machining method for efficient manufacturing of centrifugal impeller with free-form blades[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5-8): 1219-1229.
[7] Liu X W. Five-axis NC cylindrical milling of sculptured surfaces[J]. Computer-Aided Design, 1995, 27(12): 887-894.
[8] Menzel C, Bedi S, Mann S. Triple tangent flank milling of ruled surfaces[J]. Computer-Aided Design, 2004, 36(3): 289-296.
[9] Gong H, Cao L X, Liu J. Improved positioning of cylindrical cutter for flank milling ruled surfaces[J]. Computer-Aided Design, 2005, 37(12): 1205-1213.
[10] Senatore J, Landon Y, Rubio W. Analytical estimation of error in flank milling of ruled surfaces[J]. Computer-Aided Design, 2008, 40(5): 595-603.
[11] Morishige K, Kase K, Takeuchi Y. Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining[J]. The International Journal of Advanced Manufacturing Technology, 1997, 13(6): 393-400.
[12] Xu X J, Bradley C, Zhang Y F, et al. Tool-path generation for five-axis machining of free-form surfaces based on accessibility analysis[J]. International Journal of Production Research, 2002, 40(14): 3253-3274.
[13] Wu B H, Wang S J. Research on 4-axis numerical control machining of free-form surface impeller[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 993-998. (in Chinese) 吴宝海, 王尚锦. 自由曲面叶轮的四坐标数控加工研究[J]. 航空学报, 2007, 28(4): 993-998.
[14] Fan H Z, Xi G. Algorithm investigation for numerical control end milling of centrifugal impeller channels[J]. Chinese Journal of Mechanical Engineering, 2011, 47(11): 148-154. (in Chinese) 樊宏周, 席光. 基于平底刀端铣的叶轮流道底面精铣算法研究[J]. 机械工程学报, 2011, 47(11): 148-154.
[15] Wang J, Zhang D H, Luo M, et al. A global tool orientation optimization method for five-axis CNC machining of sculptured surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1452-1462. (in Chinese) 王晶, 张定华, 罗明, 等. 复杂曲面零件五轴加工刀轴整体优化方法[J]. 航空学报, 2013, 34(6): 1452-1462.
[16] Han J Y. Advanced mechanism design: analysis and synthesis [M]. Beijing: China Machine Press, 2004: 28-30. (in Chinese) 韩建友. 高等机构学[M]. 北京: 机械工业出版社, 2004: 28-30.
/
〈 | 〉 |