一种新颖的超高分辨率SAR频率域反投影成像算法
收稿日期: 2013-04-27
修回日期: 2013-11-26
网络出版日期: 2013-12-25
基金资助
南京航空航天大学基本科研业务费(NS2013023);国家自然科学基金(61201325,61301212);国防基础科研计划(B2520110008)
A Novel Frequency Domain Back-projection Algorithm for Ultra-high Resolution SAR Imaging
Received date: 2013-04-27
Revised date: 2013-11-26
Online published: 2013-12-25
Supported by
NUAA Fundamental Research Funds (NS2013023); National Natural Science Foundation of China (61201325, 61301212);Defense Industrial Technology Development Program(B2520110008)
超高分辨率条件下,机载合成孔径雷达(SAR)发射信号带宽大,合成孔径时间比较长,对成像处理算法的精度和效率要求较高。现有近似频率域处理和时间域滤波反投影(FBP)算法聚焦SAR数据时均存在诸多问题。基于微局部分析方法,提出了一种新颖的频率域滤波反投影(FD-FBP)成像处理方案。首先,利用Keystone变换简化了数据距离多普勒(RD)域徙动表达式。然后,在RD域进行反投影操作,对参考位置处反投影数据进行移位、相位补偿和FFT等操作即可以得到图像,从而在保证算法精确性的前提下有效降低了运算效率,实现了频率域方法的高效率和时间域方法的精确性特点的结合。最后,点目标仿真和实测数据处理以及与FBP等算法的对比验证了该方法的有效性。
关键词: 超高分辨率; 合成孔径雷达; 频率域滤波反投影算法; Keystone变换; 尺度变标
王昕 , 汪玲 , 朱岱寅 . 一种新颖的超高分辨率SAR频率域反投影成像算法[J]. 航空学报, 2014 , 35(4) : 1053 -1063 . DOI: 10.7527/S1000-6893.2013.0475
In an ultra-high resolution airborne synthetic aperture radar (SAR), both the bandwidth of the transmitted signal and the synthetic aperture time are increased, which results in higher requirements for accuracy and efficiency of the imaging algorithms. Many problems exist when using the approximated frequency domain algorithms and time domain filtered backprojection (FBP) algorithm to process SAR data. Based on microlocal analysis, this paper proposes a novel frequency domain FBP (FD-FBP) algorithm. In this algorithm, Keystone transform is used to simplify the range cell migration expression of the SAR data in range Doppler(RD) domain first. Then, backprojection operation is implemented in RD domain, where shift, phase compensation and FFT operations are performed on the backprojected data of reference imaging points to obtain the imagery, which reduces the computational burden and realizes the combination of the efficiency of frequency domain algorithms and accuracy of the time domain algorithms. Finally, point target simulation and real-data processing result and their comparison with the FBP algorithm results validate this algorithm.
[1] Carrara W G, Majewski R M, Goodman R S. Spotlight synthetic aperture radar signal processing algorithms[M]. Boston: Artech House, 1995: 15-27.
[2] Jakowatz C V, Wahl D E, Eichel P H, et al. Spotlight mode synthetic aperture radar: a signal processing approach[M]. Boston: Kluwer Academic Publisher, 1996: 252-267.
[3] Brenner A R. Ultra-high resolution airborne SAR imaging of vegetation and man-made objects based on 40% relative bandwidth in X-band//Geoscience and Remote Sensing Symposium(IGARSS), 2012: 7390-7400.
[4] Hippler J. Ultrahigh resolution X-band SAR images with smartradar//EUSAR 2012, 2012: 426-428.
[5] Mao X H, Zhu D Y, Zhu Z D. 2-D autofocus algorithm for ultra-high resolution airborne spotlight SAR imaging[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1289-1295.(in Chinese) 毛新华, 朱岱寅, 朱兆达. 一种超高分辨率机载聚 束SAR两维自聚焦算法[J].航空学报, 2012, 33(7): 1289-1295.
[6] Wu Q S, Shi H Z, Xing M D, et al. High signal to noise ration and high resolution wide swath imaging[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):958-967.(in Chinese) 武其松, 石洪竺, 邢孟道, 等. 高信噪比、高分辨率宽测绘带成像[J]. 航空学报, 2010, 31(5): 958-967.
[7] Raney R K, Rung H, Bamler R, et al. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geosciences and Remote Sensing, 1994, 32(4): 786-799.
[8] Doren A W. Wavefront curvature limitations and compensation to polar format processing for synthetic aperture radar images. Albuquerque: Sandia National Laboratories, 2006.
[9] Zhang S X, Xing M D, Xia X G, et al. Focus improvement of high-squint SAR based on azimuth dependence of quadratic range cell migration correction[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 150-154.
[10] Jaeschke T, Vogt M, Baer C, et al. Improvements in distance measurement and SAR-imaging applications by using ultra-high resolution mm-wave FMCW radar systems//Microwave Symposium Digest (MTT) 2012, 2012: 1-3.
[11] Clemente C, Soraghan J J. Range Doppler and chirp scaling processing of synthetic aperture radar data using the fractional Fourier transform[J].IET Signal Processing, 2012, 6(5): 503-510.
[12] Mao X H, Zhu D Y, Nie X, et al. A two dimensional overlapped subaperture polar format algorithm based on steeped-chirp signal[J]. Sensor, 2008, 8(5): 3438-3446.
[13] Doren N E. Space-variant post-filtering for wavefront curvature correction in polar-formatted spotlight-mode SAR imagery. Albuquerque: Sandia National Labs, 1999.
[14] Nolan C J, Cheney, M. Synthetic aperture inversion[J]. Inverse Problems, 2002, 18(1): 221.
[15] Yarman C E, Yazici B, Cheney M. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories[J]. IEEE Transactions on Image Processing, 2008, 17(1):84-93.
[16] Yarman C E, Yazici B. Synthetic aperture hitchhiker imaging[J]. IEEE Transactions on Imaging Processing, 2008, 17(11): 2156-2173.
[17] Basu S, Bresler. Y. O (N2log2N) filtered backprojection reconstruction algorithm for tomography[J]. IEEE Transactions on Image Processing, 2000, 9(10): 1760-1773.
[18] Vu V T, Sjogren T K, Pettersson M I. SAR imaging in ground plane using Fast Backprojection for mono-and bistatic cases//Radar Conference (RADAR), 2012: 0184-0189.
[19] Basu S, Breser Y. Error analysis and performance optimization of fast hierarchical backprojection algorithms[J]. IEEE Transactions on Image Processing, 2001, 10(7): 1103-1117.
[20] Ulander L M H, Hellsten H, Stenstron G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronics Systems, 2003, 39(3): 760-776.
[21] Rodriguez-Cassola M, Prats P, Krieger G, et al. Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2949-2966.
[22] Callow H J, Hansen R E, Saebo T O. Effect of approximation in fast factorized backprojection in synthetic aperture imaging of spot regions//OCEANS, 2006: 1-6.
[23] Vu V T, Sjogren T K, Pettersson M I, et al. Phase error calculation for fast time-domain bistatic SAR algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 49(1): 631-639.
[24] Zhu D, Li, Y, Zhu Z. A keystone transform without interpolation for SAR ground moving-target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18-22.
/
〈 | 〉 |