流体力学与飞行力学

轴流压气机转子叶尖泄漏堵塞特性的试验研究

  • 刘宝杰 ,
  • 张志博 ,
  • 于贤君
展开
  • 北京航空航天大学 能源与动力工程学院 航空发动机气动热力国家级重点实验室, 北京 100191
刘宝杰男,博士,教授,博士生导师。主要研究方向:叶轮机气动力学。Tel:010-82316419E-mail:lbj@buaa.edu.cn;张志博男,博士研究生。主要研究方向:叶轮机械内部复杂流动。Tel:010-82338139-801E-mail:zhang.zhibo@buaa.edu.cn;于贤君男,博士,讲师,硕士生导师。主要研究方向:叶轮机气动力学。Tel:010-82316455E-mail:yxj@buaa.edu.cn

收稿日期: 2013-01-30

  修回日期: 2013-04-15

  网络出版日期: 2013-12-23

基金资助

国家自然科学基金(51136003,51006007,50976009)

Experimental Investigation on Characteristics of Tip Leakage Blockage in an Axial Compressor

  • LIU Baojie ,
  • ZHANG Zhibo ,
  • YU Xianjun
Expand
  • National Key Laboratory of Science & Technology on Aero-Engine Aero-thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China

Received date: 2013-01-30

  Revised date: 2013-04-15

  Online published: 2013-12-23

Supported by

National Natural Science Foundation of China (51136003, 51006007, 50976009)

摘要

在低速大尺寸压气机试验台上,利用体视粒子图像测速(SPIV)技术详细测量了不同气动负荷水平的叶片、不同转子叶尖间隙大小和不同工作状态时转子通道内部的流场结构。定量分析了不同测量条件下转子通道内堵塞分布特点,讨论了影响堵塞发展的物理机制,旨在为转子尖部流动控制和模化研究提供必要的理论帮助。结果表明:在本文的各种测量条件下,叶尖泄漏堵塞均呈现非线性、非单调性的特征,通常在叶片通道内出现堵塞峰值;叶片通道内的逆压梯度是堵塞增长的重要物理机制,在逆压梯度环境下,堵塞起始区域的流量越大,堵塞增长得越迅速,堵塞起始区域流体的总压损失越高,堵塞越容易引起失速;泄漏流与主流之间存在较强的湍流掺混,在这个物理过程中,黏性和湍流脉动所带来的主流与泄漏流之间的动能输运是使得堵塞衰减的主要物理机制。

本文引用格式

刘宝杰 , 张志博 , 于贤君 . 轴流压气机转子叶尖泄漏堵塞特性的试验研究[J]. 航空学报, 2013 , 34(12) : 2682 -2691 . DOI: 10.7527/S1000-6893.2013.0181

Abstract

Rotor passage flow fields are measured by stereoscopic particle image velocimetry (SPIV) in a large-scale low speed axial compressor test facility. The measurements are conducted in conditions of stages with different aerodynamic loading levels, different rotor tip gap sizes and different operating conditions. The variations of blockage inside the rotor passage are analyzed by a quantitative method. The results show that: in the test conditions the distribution of blockage by the tip leakage vortex has the characteristics of non-linearity and non-monotonicity, which means the peak blockage occurs inside the rotor passage; the adverse pressure gradient is the most important physical mechanism for the growing of the blockage; in an environment of adverse pressure gradient the higher the initial mass flow rate in the blockage region,the faster is the growth of blockage, and the higher the initial total pressure deficit, the easier it is to cause stall; intensive turbulent mixing occurs between the tip leakage flow and the mainstream, and the transport of kinetic energy between the mainstream and tip leakage flow by the viscosity and turbulent fluctuation in the turbulent mixing is the main mechanism for blockage decay.

参考文献

[1] Koch C C. Stalling pressure rise capability of axial flow compressor stages. Journal of Engineering for Power, 1981, 103(4): 645-656.

[2] Smith L H, Jr. The effect of tip clearance on the peak pressure rise of axial-flow fans and compressors. ASME Symposium on Stall, 1958: 149-152.

[3] Wisler D C. Loss reduction in axial-flow compressors through low-speed modal testing. Journal of Enieering for Gas Turbines and Power, 1985, 107(2): 354-363.

[4] Baghdadi S. Modeling tip clearance effects in multistage axial compressors. Journal of Turbomachinery 1996, 118 (4): 613-843.

[5] Rains D A. Tip clearance flows in axial flow compressors and pumps. Pasadena: Hydrodynamics and Mechanical Engineering Laboratories, California Institute of Technology, 1954.

[6] Chen G T, Greitzer E M, Tan C S, et al. Similarity analysis of compressor tip clearance flow structure. Journal of Turbomachinery, 1991, 113(2): 260-271.

[7] Kang S, Hirsch C. Numerical simulation of three-dimensional viscous flow in a linear compressor cascade with tip clearance. Journal of Turbomachinery, 1996, 118(3): 492-502.

[8] Kang S, Hirsch C. Experimental study on the three-dimensional flow within a compressor cascade with tip clearance: Part I-velocity and pressure fields. Journal of Turbomachinery, 1993, 115(3): 434-443.

[9] Kang S, Hirsch C. Experimental study on the three-dimensional flow within a compressor cascade with tip clearance: Part Ⅱ-the tip leakage vortex. Journal of Turbomachinery, 1993, 115(3): 444-450.

[10] Kang S, Hirsch C. Tip leakage flow in linear compressor cascade. Journal of Turbomachinery, 1994, 116(4): 657-664.

[11] Koch C C, Smith L H, Jr. Loss sources and magnitudes in axial-flow compressors. Journal of Engineering for Power, 1976, 98(3): 411-424.

[12] Vo H D. Role of tip clearance flow on axial compressor stability. Massachusetts: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2001.

[13] Hah C, Rabe D C. Role of tip clearance flows on flow instability in axial flow compressors. 15th International Symposium on Air Breathing Engines(ISABE), 2001.

[14] Khalid S A. The effects of tip clearance on axial compressor pressure rise. Massachusetts: Department of Mechanical Engineering, Massachusetts Institute of Technology, 1995.

[15] Khalid S A, Khalsa A S. Endwall blockage in axial compressors. Journal of Turbomachinery, 1999, 121(3): 499-509.

[16] Hoeger M, Lahmer M, Dupslaff M, et al. A correlation for tip leakage blockage in compressor blade passages. Journal of Turbomachinery, 2000, 122(3): 426-432.

[17] Liu B J, Yu X J, Yuan H J, et al. Application of SPIV in turbomachinery. Experiments in Fluids, 2006, 40(4): 621-642.

[18] Yu X J, Liu B J, Yuan H J, et al. Characteristics of the tip leakage vortex in a low-speed axial compressor. AIAA Journal, 2007, 45(4): 870-878.

[19] Zhang Z B, Yu X J, Liu B J. Precision analysis of the flow field measured in compressor rotor by using stereoscopic particle image velocimetry. Journal of Aerospace Power, 2010, 25(4): 868-876. (in Chinese) 张志博, 于贤君, 刘宝杰.压气机转子内部流场SPIV测量的精度分析.航空动力学报, 2010, 25(4): 868-876.

[20] Yu X J, Liu B J. Stereoscopic PIV measurement of unsteady flows in an axial compressor stage. Experimental Thermal & Fluid Science, 2007, 31(8): 1049-1060.

[21] Jiang H K, Li Y C, Zhang H, et al. A large-scale axial flow compressor facility and dynamic measurement techniques for rotor flow study. Journal of Aerospace Power, 1992, 7(1): 1-8. (in Chinese) 蒋浩康, 李雨春, 张洪, 等.研究转子内流动的大尺寸轴流压气机实验装置和动态测量技术.航空动力学报, 1992, 7(1): 1-8.

[22] Suder K L. Blockage development in a transonic, axial compressor rotor. Journal of Turbomachinery, 1998, 120(3): 465-476.

[23] Liu B J. The flow mechanism of wake vortices and its application. Beijing: School of Energy and Power Engineering, Beihang University, 1998. (in Chinese) 刘宝杰. 尾流旋涡的流动机制及其应用. 北京: 北京航空航天大学能源与动力工程学院, 1998.

文章导航

/