流体力学与飞行力学

基于特征值理论的轴流跨声速压气机失稳预测

  • 刘小华 ,
  • 周燕佩 ,
  • 孙大坤 ,
  • 马云飞 ,
  • 孙晓峰
展开
  • 1. 中国民航科学技术研究院 发动机适航审定中心筹建办公室, 北京 100028;
    2. 北京航空航天大学 能源与动力工程学院, 北京 100191
刘小华 男, 博士, 工程师.主要研究方向: 叶轮机械流动稳定性、 航空发动机性能、 民航发动机适航审定技术. E-mail: Liuxh@mail.castc.org.cn; 周燕佩 男, 教授, 高级工程师.主要研究方向: 航空发动机整机性能与结构、 民航发动机适航审定技术. E-mail: Zhouyp@mail.castc.org.cn; 孙大坤 男, 博士, 讲师.主要研究方向: 叶轮机流动稳定性、 压气机扩稳理论与实验. E-mail: sundk@buaa.edu.cn; 马云飞 男, 博士研究生.主要研究方向: 叶轮机流动稳定性理论与实验. E-mail: mmayunfei@163.com; 孙晓峰 男, 博士, 教授, 博士生导师.主要研究方向: 叶轮机械非定常空气动力学、 叶轮机流动稳定性、 航空发动机气动声学、 气动弹性. Tel: 010-82317408 E-mail: sunxf@buaa.edu.cn

收稿日期: 2013-11-08

  修回日期: 2013-12-19

  网络出版日期: 2013-12-23

基金资助

国家自然科学基金(51106154,51010007,51236001);国家"973"计划(2012CB720201)

Axial Transonic Compressor Flow Instability Prediction Based on Eigenvalue Theory

  • LIU Xiaohua ,
  • ZHOU Yanpei ,
  • SUN Dakun ,
  • MA Yunfei ,
  • SUN Xiaofeng
Expand
  • 1. Aeroengine Airworthiness Certification Center Preparatory Office, China Academy of Civil Aviation Science and Technology, Beijing 100028, China;
    2. School of Energy and Power Engineering, Beihang University, Beijing 100191, China

Received date: 2013-11-08

  Revised date: 2013-12-19

  Online published: 2013-12-23

Supported by

National Natural Science Foundation of China (51106154,51010007,51236001); National Basic Research Program of China(2012CB720201)

摘要

流动失稳问题是叶轮机械所面临的严峻挑战之一,而旋转失速是轴流压气机及压缩系统中普遍存在的一种典型流动不稳定状态.基于特征值理论发展了一个轴流压气机流动失稳开始点预测模型,应用谱方法和奇异值分解(SVD)算法求解所建立的特征值方程,通过特征频率的虚部判断压缩系统的流动稳定性.并通过一个高速单转子在高低两个转速时的算例,定量分析了流动压缩性对跨声速压气机流动失稳开始点预测的重要影响.该模型可在合理的精度范围内,以工程应用可接受的计算资源消耗来预测跨声速单级压气机旋转失速的开始点流量,同时不应用大量经验数据,为压气机设计阶段的稳定性评估提供指导.

本文引用格式

刘小华 , 周燕佩 , 孙大坤 , 马云飞 , 孙晓峰 . 基于特征值理论的轴流跨声速压气机失稳预测[J]. 航空学报, 2014 , 35(11) : 2979 -2991 . DOI: 10.7527/S1000-6893.2013.0499

Abstract

Flow instability is a great challenge in turbomachinery, and rotating stall is one major type of flow instability in compression system of aero-engine. In the present paper a rotating stall inception model based on a general eigenvalue theory of flow stability is developed with an emphasis on flow instability onset in axial transonic compressors. After solving the established eigenvalue equation using the spectral method and the singular value decomposition (SVD) method, the onset point of flow instability is determined by the imaginary part of the resultant eigenvalue. The significant effect of flow compressibility on the stall onset point calculation for a transonic rotor is studied by comparing the prediction results for a high speed single rotor at both high and low rotational speeds. The capacity of the present model to predict the stall inception point is assessed against the experimental data of a transonic single stage compressor. It is verified that this model is capable of predicting the mass flow at the stall onset point of a multi-stage transonic compressor flow with reasonable accuracy without numerous empirical data, and it is sustainable in terms of computation cost for industrial application.

参考文献

[1] McDougall N M, Cumpsty N A, Hynes T P. Stall inception in axial compressors[J]. Journal of Turbomachinery, 1990, 112(1): 116-125.

[2] Day I J. Stall inception in axial flow compressors[J]. Journal of Turbomachinery, 1993, 115(1): 1-9.

[3] Camp T R, Day I J. A study of spike and modal stall phenomena in a low-speed axial compressor[J]. Journal of Turbomachinery, 1998, 120(3): 393-401.

[4] Day I J, Breuer T, Escuret J, et al. Stall inception and the prospects for active control in four high-speed compressors[J]. Journal of Turbomachinery, 1999, 121(1): 18-27.

[5] Wilson A G, Freeman C. Stall inception and development in an axial flow aeroengine[J]. Journal of Turbomachinery, 1994, 116(2): 216-225.

[6] Tan C S, Day I J, Morris S, et al. Spike-type compressor stall inception, detection, and control[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 275-300.

[7] Nenni J P, Ludwig G R. A theory to predict the inception of rotating stall in axial flow compressors, AIAA-1974-528[R]. Reston: AIAA, 1974.

[8] Ludwig G R, Nenni J P. Basic studies of rotating stall in axial flow compressors, AFAPL-TR-79-2083[R]. 1979.

[9] Moore F K, Greitzer E M. A theory of post-stall transients in axial compression systems:part1-2[J]. Journal of Engineering for Gas Turbine and Power, 1986, 108(1): 68-75, 231-239.

[10] Gordon K. Three-dimensional rotating stall inception and effects of rotating tip clearance asymmetry in axial compressors[D].Cambridge:Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1998.

[11] Sun X F. On the relationship between the inception of rotating stall and casing treatment[C]//32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 1996.

[12] Liu X H, Sun D K, Sun X F, et al. Flow stability theory for fan/compressors with annular duct and novel casing treatment[J]. Chinese Journal of Aeronautics, 2012, 25(2): 143-154.

[13] Lindau J W, Owen A K. Nonlinear quasi-three-dimensional modeling of rotating stall and surge, AIAA-1997-2772[R]. Reston: AIAA, 1997.

[14] Longley J P. Calculating the flow field behavior of high-speed multi-stage compressors, ASME Paper, GT-97-468[R]. New York: ASME, 1997.

[15] Escuret J F, Garnier V. Numerical simulations of surge and rotating stall in multi-stage axial-flow compressors, AIAA-1994-3202[R]. Reston: AIAA, 1994.

[16] Chima R V. A three-dimensional unsteady CFD model of compressor stability, ASME Paper, GT-2006-90040[R]. New York: ASME, 2006.

[17] Gong Y. A computational model for rotating stall and inlet distortions in multistage compressors[D]. Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1999.

[18] Hoying D A. Blade passage flow structure effects on axial compressor rotating stall inception, GTL Report No. 224[R]. Cambridge: Massachusetts Institute of Technology, 1996.

[19] He L. Computational study of rotating-stall inception in axial compressors[J]. Journal of Propulsion and Power, 1997, 13(1): 31-38.

[20] Chen J P, Johnson B, Hathaway M D, et al. Flow characteristics of tip injection on compressor rotating spike via time-accurate simulation[J]. Journal of Propulsion and Power, 2009, 25(3): 678-686.

[21] Tryfonidis M, Etchevers O, Paduano J D, et al. Pre-stall behavior of several high-speed compressors[J]. Journal of Turbomachinery, 1995, 117(1): 625-636.

[22] Weigl H J, Paduano J D, Frechette L G, et al. Active stabilization of rotating stall and surge in a transonic single-stage axial compressor[J]. Journal of Turbomachinery, 1998, 120(4): 625-636.

[23] Bonnaure L P. Modelling high speed multistage compressor stability[D].Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1991.

[24] Sun X F, Liu X H, Hou R W, et al. A general theory of flow instability inception in turbomachinery[J]. AIAA Journal, 2013, 51(7): 1675-1687.

[25] Peskin C S. Flow patterns around heart valves: anumerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271.

[26] Sirovich L. Initial and boundary value problems in dissipative gas dynamics[J]. Physics of Fluids, 1967, 10(1): 24-34.

[27] Denton J D, Dawes W N. Computational fluid dynamics for turbomachinery design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1998, 213(2): 107-124.

[28] Xu L. Assessing viscous body forces for unsteady calculations[J]. Journal of Turbomachinery, 2003, 125(2): 425-432.

[29] Yu W W, Wang X Y, Sun X F. Investigation on the theoretical model combined with the novel casting treatment with rotating stall[J]. Journal of Aerospace Power, 2005, 20(5): 873-881. (in Chinese) 于巍巍, 王晓宇, 孙晓峰. 包含处理机匣影响的压气机旋转失速稳定性模型[J]. 航空动力学报, 2005, 20(5): 873-881.

[30] Yu W W, Sun X F. Rotating stall stability theory of the transonic axial compressors/fans[J]. Journal of Aerospace Power, 2005, 20(6): 1018-1027. (in Chinese) 于巍巍, 孙晓峰. 跨声压气机/风扇旋转失速稳定性模型[J]. 航空动力学报, 2005, 20(6): 1018-1027.

[31] Malik M R. Finite-difference solution of the compressible stability eigenvalue problem, NASA CR-3584[R]. Washington, D.C.: NASA, 1982.

[32] Woodley B M, Peake N. Resonant acoustic frequencies of a tandem cascade, part 1:zero relative motion[J]. Journal of Fluid Mechanics, 1999, 393(1): 215-240.

[33] Cooper A J, Parry A B, Peake N. Acoustic resonance in aeroengine intake ducts[J]. Journal of Turbomachinery, 2004, 126(3): 432-441.

[34] Moore R D, Reid L. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratio of 1.19 and 1.26,respectively, and with design pressure ratio of 2.05, NASA-TP-1659[R]. Washington, D.C.: NASA, 1980.

[35] Suder K L, Celestina M L. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor[J]. Journal of Turbomachinery, 1996, 118(2): 218-229.

[36] Denton J D. Lessons from rotor 37[J]. Journal of Thermal Science, 1997, 6(1): 1-13.

[37] Liu X H, Hou R W, Sun D K, et al. Flow instability inception model of compressors based on eigenvalue theory[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2012.

[38] Reid L, Moore R D. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 1.82, NASA TP-1338[R].Washington, D.C.: NASA, 1978.

文章导航

/