航空航天复合材料结构非接触无损检测技术的进展及发展趋势
收稿日期: 2013-09-12
修回日期: 2013-12-11
网络出版日期: 2013-12-20
基金资助
国家商用飞机制造工程技术研究中心创新基金(SAMC13-JS-15-022);航天科技创新基金(CASC06)
Progress and Development Trends of Composite Structure Evaluation Using Noncontact Nondestructive Testing Techniques in Aviation and Aerospace Industries
Received date: 2013-09-12
Revised date: 2013-12-11
Online published: 2013-12-20
Supported by
Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing (SAMC13-JS-15-022);Innovation Fund of Aerospace Science and Technology (CASC06)
新型复合材料在航空航天领域获得广泛应用,有些甚至已代替金属成为某些核心部件的主要结构材料,此类材料及其构件在结构、材料特性、所需检测条件等方面的特殊性对无损检测技术提出更苛刻、更有针对性的检测需求,如不能使用耦合剂、高效率、高可靠性、实时、直观、绿色环保等,非接触无损检测技术被认为是满足上述检测需求的重要手段,已有多种非接触检测技术为航空航天制造及维护提供服务。本文结合航空航天工业的发展趋势及该领域对新型复合材料的检测需求,就目前国内外研究较热且具有较大应用潜力的多种非接触无损检测技术(包括空气耦合超声检测技术、红外热像技术、激光超声检测技术、散斑干涉技术)进行综述,总结各方法所具有的技术特点、研究进展与应用情况。最后,综合各技术研究现状展望非接触无损检测技术的发展趋势,为此类技术在相关领域的研究与应用提供一定的参考和借鉴。
马保全 , 周正干 . 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014 , 35(7) : 1787 -1803 . DOI: 10.7527/S1000-6893.2013.0490
Advanced composites are widely used in aviation and aerospace industries, some even replace metal as core parts of main structural material. Due to their special features in structure, material behavior and inspection conditions, several more rigorous and more targeted requirements for nondestructive testing are proposed including couplant-free, high testing efficiency, high reliability, real-time, visualized and environmental friendly, etc. Noncontact nondestructive testing techniques are viewed as viable solutions to meet the above requirements, and a variety of noncontact testing techniques have been offering services for aerospace manufacturing and maintenance. According to the development trends of aviation and aerospace industries and new inspection requirements for advanced composites, several well-suited, highly relevant and promising noncontact nondestructive testing techniques including air-coupled ultrasonic testing technique, infrared thermography, laser ultrasonic testing technique, and speckle pattern interferometry are summarized from different perspectives including technical features, research progress and applications. Finally, the development trends of noncontact nondestructive testing techniques are overviewed via synthesizing the research status of techniques above to provide certain references for the research and applications of these techniques in related industries.
[1] Chen S J. Composite technology and large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 605-610. (in Chinese) 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29(3): 605-610.
[2] Balaskó M, Sváb E, Molnár G, et al. Classification of defects in honeycomb composite structure of helicopter rotor blades[J]. Nuclear Instruments & Methods in Physics Research Section A, 2005, 542(1-3): 45-51.
[3] Liang H L, Qiu H P, Chen J, et al. Manufacturing technique of orthogonal banding foraluminum honeycomb sandwich structure[J]. Manufacturing Technologies, 2009 (Sup.): 30-32. (in Chinese) 梁恒亮, 邱海鹏, 陈静, 等. 铝蜂窝夹层板正交结构件的制造方法[J]. 航空制造技术, 2009(增刊): 30-32.
[4] Zhang L T, Cheng L F, Xu Y D. Progress in research work of new CM-SiC[J]. Aeronautical Manufacturing Technology, 2003(1): 24-32. (in Chinese) 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术, 2003(1): 24-32.
[5] Deng X D, Cheng L F, Mei H, et al. Infrared thermal wave imaging for nondestructive detection and measurement of the C/SiC composites[J]. Acta materiae Composite Sinica, 2009, 26(5): 112-119. (in Chinese) 邓晓东, 成来飞, 梅辉, 等. C/SiC复合材料的定量红外热波无损检测[J]. 复合材料学报, 2009, 26(5): 112-119.
[6] Zhang J T, Lu H N. Double mode detection of multilayer bonded structure for solid rocket motors[J]. Journal of Solid Rocket Technology, 2003, 26(4): 79-82. (in Chinese) 张吉堂, 路宏年. 火箭发动机多层粘接结构的双模式检测[J]. 固体火箭技术, 2003, 26(4): 79-82.
[7] Abou-Khousa M A, Ryley A, Kharkovsky S, et al. Comparison of X-ray, millimeter wave, shearography and through-transmission ultrasonic methods for inspection of honeycomb composites[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2007, 894(26): 999-1006.
[8] Palmer S B, Dixon S. Industrially viable non-contact ultrasound[J]. Insight, 2003, 45(3): 211-217.
[9] Zhou Z G, Wei D. Progress of air-coupled ultrasonic non-destructive testing technology[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6): 10-14. (in Chinese) 周正干, 魏东. 空气耦合式超声波无损检测技术的发展[J]. 机械工程学报, 2008, 44(6): 10-14.
[10] Kelly S P, Hayward G, Alvarez-Arenas T E G. Characterization and assessment of an integrated matching layer for air-coupled ultrasonic applications[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2004, 51(10): 1314-1323.
[11] Blomme E, Bulcaen D, Declercq F. Air-coupled ultrasonic NDE: experiments in the frequency range 750 kHz-2 MHz [J]. NDT&E International, 2002, 35(7): 417-426.
[12] Chimenti D E, Song J. Performance of spherically focused air-coupled ultrasonic transducers[J]. AIP Conference Proceedings, 2007, 894(1): 862-869.
[13] Yanez Y, Garcia-Hernandez M J, Salazar J, et al. Designing amplifiers with very low output noise for high impedance piezoelectric transducers[J]. NDT&E International, 2005, 38(6): 491-496.
[14] Turo A, Salazar J, Chavez J A, et al. Ultra-low noise front-end electronics for air-coupled ultrasonic non-destructive evaluation[J]. NDT&E International, 2003, 36(2): 93-100.
[15] Stonawski O. Non-destructive evaluation of carbon/carbon brakes using air-coupled ultrasonic inspection systems. Carbondale: Department of Mechanical Engineering and Energy Processes, Southern Illinois University, 2009.
[16] Kays R, Mazeika L, Zukauskas E. Investigation of accurate imaging of the defects in composite materials using ultrasonic air-coupled technique[J]. International Journal of Materials & Product Technology, 2011, 41(1): 105-116.
[17] Bar H N, Dayal V, Barnard D, et al. Plate wave resonance with air-coupled ultrasonics[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2010, 1211(29): 1069-1076.
[18] Sasaki K, Tsuritani H, Tsukamoto Y, et al. Air-coupled ultrasonic time-of-flight measurement system using amplitude-modulated and phase inverted driving signal for accurate distance measurements[J]. IEICE Electronics Express, 2009, 6(21): 1516-1521.
[19] Zhou Z G, Wei D, Xiang S. Application of linear-frequency-modulation based pulse compression in air-coupled ultrasonic testing[J]. Chinese Journal of Mechanical Engineering, 2010, 46(18): 24-28. (in Chinese) 周正干, 魏东, 向上. 线性调频脉冲压缩方法在空气耦合超声检测中的应用研究[J]. 机械工程学报, 2010, 46(18): 24-28.
[20] McIntyre C S, Hutchins D A, Billson D R, et al. The use of air-coupled ultrasound to test paper[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2001, 48(3): 717-727.
[21] Bhardwaj M C. High frequency non-contact ultrasonic analysis: A practical reality//ASNT Fall Conference and Quality Testing Show Paper Summaries. Arizona: American Society for Nondestructive Testing, 1999: 83-85.
[22] Imieliniska K, Castaings M, Wojtyra R, et al. Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: glass, carbon and Kevlar/epoxy composites[J]. Journal of Materials Processing Technology, 2004, 157-158: 513-522.
[23] Peters J J, Barnard D J, Hsu D K. Development of a fieldable air-coupled ultrasonic inspection system[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2004, 23(23): 1368-1375.
[24] Hillger W, Meier R, Henrich R. Inspection of CFRP components by ultrasonic imaging with air-coupling[J]. Insight, 2004, 46(3): 147-150.
[25] Dai J M, Wang Z J. Infrared thermography non-destructive testing technology and its application[J]. Techniques of Automation and Applications, 2007, 26(1): 1-7. (in Chinese) 戴景民, 汪子君. 红外热成像无损检测技术及其应用现状[J]. 自动化技术与应用, 2007, 26(1): 1-7.
[26] Deng S P, Zheng H P, Jiang Z H, et al. Application of infrared thermography in composites inspection//Shaanxi 11th Anniversary Conference on Non-destructive Testing. Shaanxi: Shaanxi Mechanical Engineering Society, 2008: 85-98. (in Chinese) 邓淑萍, 郑海平, 姜照汉. 红外热波无损检测技术在复合材料检测方面的应用//陕西省第十一届无损检测年会论文集. 陕西: 陕西省机械工程学会, 2008: 85-98.
[27] Avdelidis N P, Saarimaki E, Kauppinen T, et al. LWIR and MWIR thermography tools for composites assessment[J]. SPIE, 2010, 7661: 76610-76611.
[28] Li Z L. Study of infrared thermography nondestructive testing lockin technique. Harbin: Department of Automatic Test and Control, Harbin Institute of Technology, 2007. (in Chinese) 李振龙. 红外热波无损检测锁相技术研究. 哈尔滨: 哈尔滨工业大学仪器科学与技术学院, 2007.
[29] Mulaveesala R, Pal P, Tuli S. Interface study of bonded wafers by digitized linear frequency modulated thermal wave imaging[J]. Sensors and Actuators A: Physical, 2006, 128(1): 209-216.
[30] Holland S D, Uhl C, Renshaw J. Vibrothermographic crack heating: a function of vibration and crack size[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2009, 1096(1): 489-494.
[31] Tsopelas N, Siakavellas N J. Improvements in electromagnetic-thermal non-destructive inspection by data processing[J]. NDT&E International, 2009, 42(5): 477-486.
[32] Tian Y P. Research on key technologies of infrared thermography. Nanjing: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) 田裕鹏. 红外辐射成像无损检测关键技术研究. 南京: 南京航空航天大学自动化学院, 2009.
[33] Zalameda J N, Winfree W P, Yost W T. Air coupled acoustic thermography (ACAT) Inspection technique[J]. AIP Conference Proceedings, 2008, 975(1): 467-474.
[34] Swiderski W. Nondestructive testing of honeycomb type composites by an infrared thermography method//CD-Proceedings IV Conference. Buenos Aires: The Pan-American Committee of Nondestructive Testing, 2007: 1-12.
[35] Li H J, Huo Y, Cai L X, et al. Honeycomb structures using different optical testing methods[J]. Laser & Optoelectronics Progress, 2010(11): 89-94. (in Chinese) 李慧娟, 霍雁, 蔡良续, 等. 不同光学方法对蜂窝结构中脱粘缺陷检测[J]. 激光与光电子学进展, 2010(11): 89-94.
[36] Wang X, Jin W P, Zhang C L, et al. Actuality & evolvement of infrared thermal wave nondestructive imaging technology[J]. Nondestructive Testing, 2004, 26(10): 497-501. 王迅, 金万平, 张存林, 等. 红外热波无损检测技术及其进展[J]. 无损检测, 2004, 26(10): 497-501.
[37] Chen D P. Experimental studies on the application of ultrasonic pulse thermography and ultrasonic burst phase thermography in NDT. Beijing: College of Information Engineering, Capital Normal University, 2009. (in Chinese) 陈大鹏. 超声脉冲及超声脉冲相位热像技术用于无损检测的实验研究. 北京: 首都师范大学信息工程学院, 2009.
[38] Guo X W, Li R S, Ding M M. Simulating modulated thermography of cladding debond in solid rockets[J]. Journal of Mechanical Engineering, 2011, 47(2): 9-15. (in Chinese) 郭兴旺, 李苒笙, 丁蒙蒙. 固体火箭包覆层脱粘调制红外热波检测法的数值模拟[J]. 机械工程学报, 2011, 47(2): 9-15.
[39] Zhou K Y, Tian Y P, Yao E T, et al. Method for recognizing type of flaw in honeycomb. parts[J]. Journal of Data Acquisition and Processing, 2004, 19(1): 115-118. (in Chinese) 周克印, 田裕鹏, 姚恩涛, 等. 蜂窝结构缺陷类型识别的研究[J]. 数据采集与处理, 2004, 19(1): 115-118.
[40] Liu Y T, Guo G P, Yang D G, et al. Pulsed thermography of composite components used in aerospace applications[J]. Journal of Aeronautical Materials, 2012, 32(1): 72-77. (in Chinese) 刘颖韬, 郭广平, 杨党纲, 等. 脉冲热像法在航空复合材料构件无损检测中的应用[J]. 航空材料学报, 2012, 32(1): 72-77.
[41] Guo X W, Ding M M. Simulation of thermal NDT of thickness and its uneveness of thermal barrier coatings[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 198-203. (in Chinese) 郭兴旺, 丁蒙蒙. 热障涂层厚度及厚度不均热无损检测的数值模拟[J]. 航空学报, 2010, 31(1): 198-203.
[42] Mattei C, Adler L. Leaky wave detection at air-solid interfaces by laser interferometry[J]. Ultrasonics, 2000, 38(1-8): 570-574.
[43] Leong W H, Staszewski W J, Lee B C, et al. Structural health monitoring using scanning laser vibrometry: Ⅲ. Lamb waves for fatigue crack detection[J]. Smart Materials & Structures, 2005, 14(6): 1387-1395.
[44] Wang Y M, Kang Y H, Wu X J. Application of ultrasonic guided wave nondestructive testing of pipes[J]. Journal of Naval University of Engineering, 2005, 17(5): 34-37. (in Chinese) 王悦民, 康宜华, 武新军. 管道超声导波无损检测技术应用研究[J]. 海军工程大学学报, 2005, 17(5): 34-37.
[45] Kenderian S, Cerniglia D, Djordjevic B B, et al. Laser-air hybrid ultrasonic technique for dynamic railroad inspection applications[J]. Insight, 2005, 47(6): 336-340.
[46] Green R E. Non-contact ultrasonic techniques[J]. Ultrasonics, 2004, 42(1-9): 9-16.
[47] Hutchins D A, Wright W M D, Hayward G, et al. Air-coupled piezoelectric detection of laser-generated ultrasound[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1994, 41(6): 796-805.
[48] Toledo A R, Soler J S, Domínguez J A C, et al. Guided wave sensing in a carbon steel pipe using a laser vibrometer system//The 9th International Conference on Vibration Measurement by Laser and Noncontact Techniques and Short Course. Ancona: American Institute of Physics, 2010: 155-163.
[49] He C F. Laser ultrasonic techniques and applications. Beijing: School of Aerospace, Tsinghua University, 1995.(in Chinese) 何存富. 激光超声技术及其应用研究. 北京: 清华大学航天航空学院, 1995.
[50] Shi L. Laser inspection for composite parts[J]. Aviation Maintenance and Engineering, 2002(2): 37-38. (in Chinese) 石林. 复合材料构件的激光超声检验[J]. 航空工程与维修, 2002(2): 37-38.
[51] Zhou Z G, Sun G K, Li Z, et al. Application of laser ultrasonic testing technique on the detection of composite structures[J]. Journal of Harbin University of Science and Technology, 2012, 17(6): 119-122. (in Chinese) 周正干, 孙广开, 李征, 等. 激光超声检测技术在复合材料检测中的应用[J]. 哈尔滨理工大学学报, 2012, 17(6): 119-122.
[52] Jiang Y J. Speckle metrology for testing of composite material. Nanjing: College of Civil Engineering, Southeast University, 2006. (in Chinese) 姜益军. 散斑检测技术在复合材料测试中的应用研究. 南京: 东南大学土木工程学院, 2006.
[53] Luan X, Liang J, Cheng J, et al. ESSPI non-destructive testing of honeycomb sandwich panel for bonding defects[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6): 775-778. (in Chinese) 栾旭, 梁军, 程靳, 等. 蜂窝夹芯板缺陷的ESSPI无损检测[J]. 北京航空航天大学学报, 2009, 35(6): 775-778.
[54] Gerhard H, Busse G. Two new techniques to improve interferometric deformation-measurement: lockin and ultrasound excited speckle-interferometry//Proceedings of Fringe 2005. 2005: 530-538.
[55] Liu L, Meng G. The application status of electronic speckle pattern interferometric nondestructive testing[J]. Nondestructive Testing, 2006, 28(1): 28-30. (in Chinese) 刘龙, 孟光. 电子散斑干涉无损检测技术的应用现状[J]. 无损检测, 2006, 28(1): 28-30.
[56] Kumar R, Singh S K, Shakher C. Wavelet filtering applied to time-average digital speckle pattern interferometry fringes[J]. Optics & Laser Technology, 2001, 33(8): 567-571.
[57] Findeis D, Gryzagoridis J, Matlali M. Phase stepping shearography and electronic speckle pattern interferometry[J]. Materials Evaluation, 2006, 64(10): 1020-1025.
[58] Hatta H, Aly-Hassan M S, Hatsukade Y, et al. Damage detection of C/C composites using ESPI and SQUID techniques[J]. Composites Science and Technology, 2005, 65(7-8): 1098-1106.
[59] Farge L, Varna J, Ayadi Z. Damage characterization of a cross-ply carbon fiber/epoxy laminate by an optical measurement of the displacement field[J]. Composites Science and Technology, 2010, 70(1): 94-101.
[60] Ambu R, Aymerich F, Ginesu F, et al. Assessment of NDT interferometric techniques for impact damage detection in composite laminates[J]. Composites Science and Technology, 2006, 66(2): 199-205.
[61] Wan M, Wang H T, Jiang Z F, et al. The research and application of ESPI technology on honeycomb structural materials[J]. Journal of Nanchang Hangkong University:Natural Sciences, 2007, 21(Sup.): 249-252. (in Chinese) 万敏, 王海涛, 姜兆芳, 等. 电子散斑干涉技术在蒙皮蜂窝结构材料的无损检测应用研究[J]. 南昌航空大学学报:自然科学版, 2007, 21(增刊): 249-252.
[62] Wang Y L. Electonic speckle pattern interferometer and laser shearography thchnique[J]. Nondestructive Testing, 2003, 25(2): 96-98. (in Chinese) 王幼玲. 激光错位散斑干涉测量系统[J]. 无损检测, 2003, 25(2): 96-98.
[63] Xiao Y S, Zeng Q L, Ma T J. Development and application of new nondestructive laser speckle instrument for tire testing[J]. Nondestructive Inspection, 2012, 36(1): 19-22. (in Chinese) 肖玉霜, 曾启林, 马铁军, 等. 新型激光散斑轮胎无损检测仪开发及应用[J]. 无损探伤, 2012, 36(1): 19-22.
[64] Zhang J, Geng R S. Studies on filed-applicable shearography NDT of airplane composites[J]. Nondestructive Testing, 2007, 29(7): 378-381. (in Chinese) 张坚, 耿荣生. 复合材料的现场电子剪切散斑检测技术研究[J]. 无损检测, 2007, 29(7): 378-381.
[65] Pei C X, Fukuchi T, Zhu H, et al. A study of internal defect testing with the laser-EMAT ultrasonic method[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2012, 59(12): 2702-2708.
[66] Zhang S Y. Laser acoustic and its application in materials inspecion[J]. Appiled Acoustics, 1992, 11(4): 1-6. (in Chinese) 张淑仪. 激光超声与材料无损评价[J]. 应用声学, 1992, 11(4): 1-6.
[67] Tsopelas N, Siakavellas N. Experimental evaluation of electromagnetic-thermal non-destructive inspection by eddy current thermography in square aluminum plates[J]. NDT&E International, 2011, 44(7): 609-620.
[68] Zhou Z G, Huang F Y, Yu F F. Testing method combing EMAT with eddy current[J]. Nondestructive Testing, 2009, 31(9): 706-710. (in Chinese) 周正干, 黄凤英, 于芳芳. 电磁超声和涡流组合检测方法[J]. 无损检测, 2009, 31(9): 706-710.
[69] Zhou Z G, Huang F Y, Lin J M. Analysis on the relationship between EMAT transmitting efficiency and the electrical conductivity of the coating on material surface[J]. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3-4): 1245-1252.
[70] Urayama R, Uchimoto T, Takagi T. Application of EMAT/EC dual probe to monitoring of wall thinning in high temperature environment[J]. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3-4): 1317-1327.
[71] Miller M, Mi B, Kita A, et al. Development of automated real-time data acquisition system for robotic weld quality monitoring[J]. Mechatronics, 2002, 12(9-10): 1259-1269.
[72] Liu S P, Liu F F, Guo E M, et al. High speed non-destructive testing techinique and its development trend[J]. Aeronautical Manufacturing Technology, 2005(11): 31-34. (in Chinese) 刘松平, 刘菲菲, 郭恩明, 等. 快速无损检测方法及发展趋势[J]. 航空制造技术, 2005(11): 31-34.
[73] Geng R S. On the rapidly developing nondestructive tedting technology in china[J]. Nondestructive Testing, 2008, 30(2): 69-72. (in Chinese) 耿荣生. 迅速发展的中国无损检测事业[J]. 无损检测, 2008, 30(2): 69-72.
[74] Zhou Z G, Feng Z Y, Gao Y F, et al. Application of ultrasonic guided waves to defect inspection of large thin aluminum plate[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 1044-1048. (in Chinese) 周正干, 冯占英, 高翌飞, 等. 超声导波在大型薄铝板缺陷检测中的应用[J]. 航空学报, 2008, 29(4): 1044-1048.
[75] Pantano A, Cerniglia D. Simulation of laser-generated ultrasonic wave propagation in solid media and air with application to NDE[J]. Applied Physics A: Materials Science and Processing, 2010, 98(2): 327-336.
[76] Mirkhani K, Chaggares C, Masterson C, et al. Optimal design of EMAT transmitters[J]. NDT&E International, 2004, 37(3): 181-193.
[77] Wei D, Zhou Z G. Finite difference simulation of pulsed ultrasonic propagation in solids[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 388-392. (in Chinese) 魏东, 周正干. 固体中脉冲超声波传播的有限差分模拟[J]. 航空学报, 2010, 31(2): 388-392.
[78] Xu Y F, Xu C G, Xiao D G, et al. Computation and measurement for pulse sound field of ultrasonic transducer[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1705-1709. (in Chinese) 徐圆飞, 徐春广, 肖定国, 等. 超声换能器脉冲波声场数值计算与测试[J]. 航空学报, 2008, 29(6): 1705-1709.
[79] Liu Z Q, Liu X. Development of ultrasonic nondestructive testing techniques[J]. Nondestructive Testing, 2000, 22(9): 403-405. (in Chinese) 刘镇清, 刘骁. 超声无损检测的若干新进展[J]. 无损检测, 2000, 22(9): 403-405.
[80] Berriman J R, Hutchins D A, Neild A, et al. The application of time-frequency analysis to the air-coupled ultrasonic testing of concrete[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2006, 53(4): 768-776.
[81] Lazaro J C, Emeterio J L S, Ramos A, et al. Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets[J]. Ultrasonics, 2002, 40(1-8): 263-267.
[82] Ho K S, Gan T H, Billson D R, et al. Application of pulse compression signal processing techniques to electromagnetic acoustic transducers for noncontact thickness measurements and imaging[J]. Review of Scientific Instruments, 2005, 76(5): 054902-054908.
[83] Sun Y J, Yuan S F, Qiu L, et al. Structural health monitoring based on Lamb wave phased array and image enhancement[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1325-1330. (in Chinese) 孙亚杰, 袁慎芳, 邱雷, 等. 基于Lamb波相控阵和图像增强方法的损伤监测[J]. 航空学报, 2009, 30(7): 1325-1330.
[84] Neild A, Hutchins D A, Billson D R. Imaging using air-coupled polymer-membrane capacitive ultrasonic arrays[J]. Ultrasonics, 2004, 42(1-9): 859-864.
[85] Hsu D K. Nondestructive testing using air-borne ultrasound[J]. Ultrasonics, 2006, 44(Sup.): E1019-E1024.
[86] Bezlyud’ko G Y, Dolbnya E V, Leshchenko N G, et al. Portable electromagnetic-acoustic thickness meters (EMAT)[J]. Russian Journal of Nondestructive Testing, 2004, 40(4): 239-245.
[87] Zhou Z G, Li H P, Lu H N. Research on PC/DSP-based ICT image reconstruction system[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1): 90-93. (in Chinese) 周正干, 李和平, 路宏年. 基于PC/DSP的ICT图像重建系统研究[J]. 航空学报, 2003, 24(1): 90-93.
[88] Gan T H, Hutchins D A, Billson D R, et al. High-resolution, air-coupled ultrasonic imaging of thin materials[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2003, 50(11): 1516-1524.
[89] Lobkis O I, Chimenti D E, Zhang H. In-plane elastic property characterization in composite plates[J]. Journal of the Acoustical Society of America, 2000, 107(4): 1852-1858.
[90] Potter M D G, Dixon S, Davis C. Development of an automated non-contact ultrasonic texture measurement system for sheet metal[J]. Measurement Science & Technology, 2004, 15(7): 1303-1308.
[91] Hurley D H, Reese S J, Farzbod F. Application of laser-based resonant ultrasound spectroscopy to study texture in copper[J]. Journal of Applied Physics, 2012, 111(5): 1-6.
[92] Karabutov A, Devichensky A, Ivochkin A, et al. Laser ultrasonic diagnostics of residual stress[J]. Ultrasonics, 2008, 48(6-7): 631-635.
[93] Mallet L, Lee B C, Staszewski W J, et al. Structural health monitoring using scanning laser vibrometry: II. Lamb waves for damage detection[J]. Smart Materials & Structures, 2004, 13(2): 261-269.
[94] Wang Q, Yuan S F. Amplifying signal and imaging damage method for active lamb wave structure health monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 1061-1067. (in Chinese) 王强, 袁慎芳. 主动 Lamb 波结构健康监测中信号增强与损伤成像方法[J]. 航空学报, 2008, 29(4): 1061-1067.
/
〈 | 〉 |