旋翼VPM/CFD耦合模型的建立及其在小前进比气动分析中的应用
收稿日期: 2013-07-23
修回日期: 2013-11-15
网络出版日期: 2013-11-29
基金资助
国家自然科学基金(11302103);航空科学基金(20135752055)
Development of a Coupled VPM/CFD Model and Its Application to Aerodynamic Analysis of Rotors at Low Advance Ratios
Received date: 2013-07-23
Revised date: 2013-11-15
Online published: 2013-11-29
Supported by
National Natural Science Foundation of China (11302103); Aeronautical Science Foundation of China(20135752055)
为了提高旋翼计算流体力学(CFD)流场计算效率及克服其在尾迹捕捉上的不足,将旋翼黏性涡粒子方法(VPM)与CFD分析相结合,建立了一个新的旋翼VPM/CFD耦合气动分析模型。在该模型中,采用VPM分析以实现对旋翼尾迹中黏性涡的高效捕捉而不引入数值耗散,而采用CFD分析用于精确地模拟旋翼桨叶近体区域内复杂的流动现象,同时也为VPM分析提供一个较高精度的涡源模型。至于两者信息交换,则使用集中涡源法将CFD信息传递至VPM分析,而VPM计算得到的尾迹信息则通过边界修正施加至CFD域的远场边界上,从而可以鲁棒地实现CFD域与VPM域的耦合计算。在此基础上,对“Helishape 7A旋翼”小前进比前飞桨-涡干扰(BVI)状态进行了较为深入的气动分析,计算结果表明:与全CFD计算比较,建立的VPM/CFD耦合分析模型可以有效地避免旋翼尾迹区桨尖涡的数值耗散,从而更加可靠地捕捉桨-涡干扰状态下的桨叶非定常气动载荷脉动,同时对于本文算例,计算效率可以提高30%以上。
肖宇 , 徐国华 , 史勇杰 . 旋翼VPM/CFD耦合模型的建立及其在小前进比气动分析中的应用[J]. 航空学报, 2014 , 35(6) : 1530 -1538 . DOI: 10.7527/S1000-6893.2013.0467
In order to improve the computational efficiency and wake capturing resolution in rotor computational fluid dynamics (CFD) analysis, a new hybrid aerodynamic analysis model is developed through coupling viscous vortex particle method (VPM) with CFD. In this model, VPM simulates the rotor wake variation without any numerical dissipation, and CFD predicts the complicated flow phenomenon in the vicinity of a blade accurately, and provides precise vorticity sources for VPM. The integrated vorticity source method is adopted to transfer the CFD information into VPM, while the boundary correction method is employed to impose the VPM wake information on the CFD outer boundary; thus an efficient and robust coupling scheme is established. Based on the aforementioned method, the blade-vortex interaction (BVI) of "Helishape 7A rotor" at low advance ratio is investigated, and the results indicate that the VPM/CFD coupling method developed in this paper avoids numerical dissipation more effectively as compared with the full CFD method, while airload fluctuations in the BVI condition can be captured more reliably. Furthermore, the computational efficiency enhancement can be over 30% in the present analysis scenario.
[1] Zhao Q J, Xu G H. A hybrid method based on Navier-Stokes/free wake/full-potential solver for rotor flow simulations[J]. Acta Aerodynamica Sinica, 2006, 24(1): 15-21. (in Chinese) 招启军, 徐国华. 基于Navier-Stokes方程/自由尾迹/全位势方程的旋翼流场模拟混合方法[J]. 空气动力学学报, 2006, 24(1): 15-21.
[2] He C J, Zhao J G. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal, 2009, 47(4): 902-915.
[3] Li P, Chen R L. Rotor tip vortex model and its effect on free-vortex wake analysis[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1517-1523. (in Chinese) 李攀, 陈仁良. 旋翼桨尖涡模型及其在自由尾迹分析中的影响[J]. 航空学报, 2010, 31(8): 1517-1523.
[4] Duraisamy K, Baeder J D. High resolution wake capturing methodology for hovering rotors[J]. Journal of the American Helicopter Society, 2007, 52(2): 110-122.
[5] Wei P, Shi Y J, Xu G H, et al. Numerical method for simulating rotor flow field based upon viscous vortex model[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 771-780. (in Chinese) 魏鹏, 史勇杰, 徐国华, 等. 基于黏性涡模型的旋翼流场数值方法[J]. 航空学报, 2012, 33 (5): 771-780.
[6] Tan J F. Research on helicopter aerodynamic interaction with unsteady panel/viscous vortex partical hybrid method. Beijing: School of Aerospace, Tsinghua University. 2013. (in Chinese) 谭剑锋. 基于非定常面元/粘性涡粒子法的直升机气动干扰研究. 北京: 清华大学航天航空学院, 2013.
[7] Zhao J G, He C J. A hybrid solver with combined CFD and viscous vortex particle method//Proceedings of the 67th Annual Forum of the American Helicopter Society, 2011: 393-406.
[8] Zhao J G, He C J, Zhang L, et al. Coupled viscous vortex particle method and unstructured CFD solver for rotorcraft aerodynamic interaction analysis//Proceedings of the 49th AIAA Aerospace Sciences Meeting, 2011: 15251-15263.
[9] Stone C P, Duque E P, Hennes C C, et al. Rotor wake modeling with a coupled eulerian and vortex particle method//Proceedings of 48th Aerospace Sciences Meeting & Exhibit, 2010: 3612-3624.
[10] Yang A M, Qiao Z D. Navier-Stokes computation for a helicopter rotor in forward flight based on moving overset grids[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(5): 434-436. (in Chinese) 杨爱明, 乔志德. 基于运动嵌套网格的前飞旋翼绕流N-S方程数值计算[J]. 航空学报,2001, 22(5): 434-436.
[11] Xu G H, Wang S C. Free calculation for helicopter rotor in forward flight[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1997, 29(6): 648-653.(in Chinese) 徐国华, 王适存. 前飞状态直升机旋翼的自由尾迹计算[J]. 南京航空航天大学学报, 1997, 29(6): 648-653.
[12] Sitaraman J, Baeder J. Evaluation of the wake prediction methodologies used in CFD based rotor airload computations, AIAA-2006-3472. Reston: AIAA, 2006.
[13] Shi Y J, Fan F, Xu G H, et al. Rotor blade-vortex interaction noise prediction based upon hybrid CFD[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 91-98. (in Chinese) 史勇杰, 樊枫, 徐国华, 等.基于混合CFD方法的旋翼桨-涡干扰噪声计算[J].航空学报, 2011, 32(1): 91-98.
[14] Zhao J G, He C J. Coupled CSD/CFD and viscous vortex particle method for rotorcraft comprehensive analysis//Proceedings of 68th Annual Forum of the American Helicopter Society, 2012: 1050-1073.
[15] Biava M, Bindolino G, Vigevano L. Single blade computations of helicopter rotors in forward flight, AIAA-2003-0052. Reston: AIAA, 2003.
/
〈 | 〉 |