考虑进口非均匀的喷管设计及冷流条件下的性能研究
收稿日期: 2013-05-17
修回日期: 2013-11-05
网络出版日期: 2013-11-26
基金资助
国家自然科学基金(90916023);中央高校基本科研业务费专项资金(CXZZ11_0223)
Design and Cold Flow Experiment of a Scramjet Nozzle Considering Nonuniform Entrance Flow Effects
Received date: 2013-05-17
Revised date: 2013-11-05
Online published: 2013-11-26
Supported by
National Natural Science Foundation of China (90916023); The Fundamental Research Funds for the Central Universities (CXZZ11_0223)
超燃冲压发动机尾喷管与燃烧室直接相连,由于没有几何喉道和收缩段的整流作用,实际工作过程中尾喷管的进口气流是非均匀的,因而有必要研究非均匀进口条件下的尾喷管设计方法。以超燃冲压发动机尾喷管非均匀进口马赫数分布为条件,采用有旋特征线设计了超燃冲压发动机非对称尾喷管的等熵膨胀型线。利用数值模拟和试验相结合的方法研究了冷流条件下喷管的气动性能。结果表明,在相同的进口条件下,相对于假定进口马赫数均匀分布设计得到的喷管,考虑进口马赫数非均匀分布设计的喷管推力增加0.6%~2.0%,负升力降低可达82.0%,俯仰力矩增加8.6%~13.0%,这说明在喷管的设计过程中考虑进口参数分布的非均匀性是有必要的。
莫建伟 , 徐惊雷 , 全志斌 , 俞凯凯 . 考虑进口非均匀的喷管设计及冷流条件下的性能研究[J]. 航空学报, 2014 , 35(3) : 706 -713 . DOI: 10.7527/S1000-6893.2013.0452
A scramjet nozzle is directly connected to the combustor and there is no contraction section or throat, which makes the nozzle entrance flow nonuniform, it is therefore necessary to obtain the design method for a scramjet nozzle with nonuniform entrance flow. In this paper, a scramjet nozzle is designed using the rotational method of characteristics which takes into consideration the nonuniform entrance flow effects. Experimental and numerical studies are performed to investigate the aerodynamic performance of this scramjet nozzle in conditions of cold flow, and the comparison is made with the nozzle which is designed with a uniform entrance flow in the same condition. Results obtained from the comparison conclude that the performance improvement obtained from the nonuniform nozzle design is about 0.6%-2.0% for thrust, 82.0% for negative lift, and 8.6%-13.0% for pitch moment, which demonstrates it is highly necessary to take into consideration the nonuniform distribution of entrance flow parameters when designing a scramjet nozzle.
[1] Mercier R A, Ronald T M F. Hypersonic technology (HyTech) program overview, AIAA-1998-1566[R]. Reston: AIAA, 1998.
[2] Bertin J J, Cummings R M. Fifty years of hypersonic: where we’ve been, where we’re going[J]. Progress in Aerospace Sciences, 2003, 39(6): 511-536.
[3] Falempin F. French contribution to hypersonic airbreathing propulsion technology development[J]. Journal of Propulsion and Technology, 2010, 31(6): 650-659.
[4] Le J L. Progress in air-breathing hypersonic technology[J]. Journal of Propulsion Technology, 2010, 31(6): 641-649. (in Chinese) 乐嘉陵.吸气式高超声速研究进展[J].推进技术, 2010, 31(6): 641-649.
[5] Fry R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58.
[6] Zhao Q, Xu J L, Yu Y. Design and experimental validation of SERN based on controllable expansion degree distribution[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 125-131. (in Chinese) 赵强, 徐惊雷, 于洋. 基于膨胀度可控的SERN设计及试验验证[J]. 航空学报, 2014, 35(1): 125-131.
[7] Ge J H, Xu J L, Wang M T, et al. Prediction of flow separation in asymmetric ramp nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1394-1399.(in Chinese) 葛建辉, 徐惊雷, 王明涛, 等. 非对称喷管流动分离的预测[J]. 航空学报, 2012, 33(8): 1394-1399.
[8] Snelling S L. Effect of nonuniform entrance flow profile on hypersonic nozzle pitching moment, AD-A244050[R]. 1991.
[9] Schindel L. Effect of nonuniform nozzle flow on scramjet performance[J]. Journal of Propulsion and Power, 1998, 15(2): 363-364.
[10] Heiser W H, Pratt D T. Hypersonic airbreathing propulsion[M]. 4th ed. Washington, D. C.: AIAA, 1994: 418-423.
[11] Kushida R, Falconer F, Seiveno D. Advanced air breathing engine study, AD-0355503[R]. 1964.
[12] Ebrahimi H B, Lankford D W. Numerical study of phenomena affecting the prediction of scramjet combustor and nozzle performance, AIAA-1993-20142[R]. Reston: AIAA, 1993.
[13] Wang X D, Le J L. Effect of temperature profile at entrance on flow-fields of nozzle[J]. Journal of Propulsion Technology, 2002, 23(4): 283-286. (in Chinese) 王晓栋, 乐嘉陵. 入口温度剖面对喷管流场结构的影响[J]. 推进技术, 2002, 23(4): 283-286.
[14] Quan Z B, Xu J L, Li B, et al. Cold flow experiment and numerical study on nonuniform entrance flow of scramjet nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2308-2315.(in Chinese) 全志斌, 徐惊雷, 李斌, 等. 超燃冲压发动机尾喷管非均匀进口的冷流试验与数值模拟研究[J]. 航空学报, 2013, 34(10): 2308-2315.
[15] Goeing M. Nozzle design optimization by method of characteristics, AIAA-1990-2024[R]. Reston: AIAA, 1990.
[16] Rickey J S, Theo G K, Jr. Analysis and design of optimized truncated scarfed nozzles subject to external flow effects, AIAA-1990-2222[R]. Reston: AIAA, 1990.
[17] Gaffney R L, Jr. Design of a Mach-15 total-enthalpy nozzle with non-uniform inflow using rotational MOC, AIAA-2005-691[R]. Reston: AIAA, 2005.
[18] Nickerson G R, Dunn S S, Migdal D. Optimized supersonic exhaust nozzles for hypersonic propulsion, AIAA-1988-3161[R]. Reston: AIAA, 1988.
/
〈 | 〉 |