航空发动机支板热滑油防冰性能试验
收稿日期: 2013-10-15
修回日期: 2013-11-15
网络出版日期: 2013-11-22
基金资助
国家自然科学基金(51076103,11272212)
Test on Performance of an Aero-engine Strut Hot Lubrication Oil Anti-icing System
Received date: 2013-10-15
Revised date: 2013-11-15
Online published: 2013-11-22
Supported by
National Natural Science Foundation of China (51076103,11272212)
在冰风洞内开展了结冰条件下涡轴发动机进气支板的热滑油防冰系统的防冰性能试验研究。试验设计加工了滑油电加热系统,采用可编程逻辑控制器(PLC)监控滑油的温度和流量。在冰风洞中采用全尺寸模型开展滑油防冰性能试验,所开展的涡轴发动机支板热滑油防冰试验参数包括:来流温度为-10,-5℃,来流速度为40 m/s,液态水含量为0.5,1.0 g/m3,过冷水滴平均体积直径为20 μm。试验开展了不同结冰气候条件下、不同滑油通道位置滑油防冰进气支板防冰效果的研究,记录了支板表面温度的变化和结冰情况。试验同时得到了支板防冰能力不足时支板表面的结冰冰型和结冰环境下发动机支板热滑油防冰的特点。
董威 , 朱剑鋆 , 周志翔 , 董奇 . 航空发动机支板热滑油防冰性能试验[J]. 航空学报, 2014 , 35(7) : 1845 -1853 . DOI: 10.7527/S1000-6893.2013.0466
An test study on the performance of a hot lubrication oil anti-icing system of an aero-engine strut in an icing tunnel is conducted. The test model is a full-scale inlet strut of a turboshaft engine. In the test, the hot lubrication oil is heated by an electric heater. The temperature and mass flow of the lubrication oil are controlled by a programmable logic controller (PLC) system. The temperature distributions on the strut surface are measured by thermocouples. The icing environment parameters in the icing tunnel for the turboshaft engine strut are: the total temperatures of the free stream are -5℃ and -10℃, the velocity of the free stream is 40 m/s; the liquid water content is 0.5 g/m3 and 1.0 g/m3; the median volumetric diameter of the super-cooled water droplet is 20 μm. The surface temperatures of the strut and the ice shapes accreted on the strut are measured and photographed. The ice shapes are obtained when the capacity of the anti-icing system is insufficient. The characteristics of the hot lubrication oil anti-icing system are also studied under icing conditions.
Key words: hot lubrication oil; icing; anti-icing; icing tunnel; anti-icing test; engine strut
[1] Qiu X G, Han F H. Anti-icing system of aircraft[M]. Beijing: Aviation Professional Teaching Materials Editing Group, 1985: 23. (in Chinese) 裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京: 航空专业教材编审组, 1985: 23.
[2] Kind R J, Potapczuk M G, Feo A, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Sciences, 1998, 34(5-6): 257-345.
[3] Aero-Engine Design Manual Editorial Board. Aero engine design manual, Volume 16[M]. Beijing: Aviation Industry Press, 2001: 251-254. (in Chinese) 《航空发动机设计手册》总编委会. 航空发动机设计手册——第16册[M]. 北京: 航空工业出版社, 2001: 251-254.
[4] Al-Khalil K M, Keith T G, de Witt K J, et al. Thermal analysis of engine inlet anti-icing systems[J]. Journal of Propulsion and Power, 1990, 6(5): 628-634.
[5] Potapczuk M G. A review of NASA Lewis' development plans for computational simulation of aircraft icing, AIAA-1999-0243. Reston: AIAA, 1999.
[6] Saeed F, Morency F, Paraschivoiu I. Numerical simulation of a hot-air anti-icing system, AIAA-2000-0630. Reston: AIAA, 2000.
[7] Hamed A, Das K, Basu D. Numerical simulations of ice droplet trajectories and collection efficiency on aero-engine rotating machinery, AIAA-2005-1248. Reston: AIAA, 2005.
[8] Jorgenson P C E, Veres J P, May R D, et al. Aerospace engine icing modeling and simulation (Part I): ice crystal accretion on compression system components and modeling its effects on engine performance//SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing, 2011: 1-26.
[9] Yeoman K E. Efficiency of a bleed air powered inlet icing protective system, AIAA-1994-0717. Reston: AIAA, 1994.
[10] Jin W, Taghavi R. A computational study of icing effects on the performance of S-duct inlets, AIAA-2008-4584. Reston: AIAA, 2008.
[11] Lee S, Loth E, Simulation of icing on a cascade of stator blades, AIAA-2006-0208. Reston: AIAA, 2006.
[12] Ashwood P F. An altitude test facility for large turbofan engines, AIAA-1972-1069. Reston: AIAA, 1972.
[13] Luttrell J, West T. F-22 inlet shed ice particle sizing test, AIAA-2001-0553. Reston: AIAA, 2001.
[14] Willcocks H J. Icing conditions on sea level gas turbine engine test stands, AIAA-1982-1237-631. Reston: AIAA, 1982.
[15] Al-Khalil K M, Hitzigrath R, Philippi O, et al. Icing analysis and test of a business jet engine inlet duct, AIAA-2000-1040-453. Reston: AIAA, 2000.
[16] Venkataramani K S, Balan C, Caney R D, et al. Wind tunnel tests and modeling studies of ice accretion relevant to aircraft engines, AIAA-2003-0906. Reston: AIAA, 2003.
[17] Zhang D L, Chen W J. Numerical simulation of rime ice accretion process on airfoil[J]. Journal of Aerospace Power, 2004,19(1): 137-141. (in Chinese) 张大林, 陈维健. 飞机机翼表面霜状冰结冰过程的数值模拟[J]. 航空动力学报, 2004, 19(1): 137-141.
[18] Yi X. Numerical computation of aircraft icing and study on icing test scaling law. Mianyang: China Aerodynamics Research and Development Center, 2007. (in Chinese) 易贤. 飞机积冰的数值计算与积冰试验相似准则研究. 绵阳: 中国空气动力研究与发展中心, 2007.
[19] Bu X Q, Lin G P, Yu J. Three-dimensional conjugate heat transfer simulation for the surface temperature of wing hot-air anti-icing system[J]. Journal of Aerospace Power, 2009, 24(11): 2495-2500. (in Chinese) 卜雪琴, 林贵平, 郁嘉. 三维内外热耦合计算热气防冰系统表面温度[J]. 航空动力学报, 2009, 24(11): 2495-2500.
[20] Chang S N, Su X M, Qiu Y F. Ice accretion simulation on three dimensional wings[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 212-222. (in Chinese) 常士楠, 苏心明, 邱义芬. 三维机翼结冰模拟[J]. 航空学报, 2011, 32(2): 212-222.
[21] Dong W, Zhu J J, Zhao Q Y. Numerical simulation of the guide vane with hot air anti-icing passage, AIAA-2011-3944. Reston: AIAA, 2011.
[22] Dong W, Hou Y Z, Min X H. Experimental study of hot air anti-icing system of inlet guide vane[J]. Journal of Shanghai Jiao Tong University, 2010, 44(11): 1579-1582. (in Chinese) 董威, 侯玉柱, 闵现花. 进口导向叶片热气防冰系统试验研究[J]. 上海交通大学学报, 2010, 44(11): 1579-1582.
/
〈 |
|
〉 |