阵列宽带Lamb波在结构损伤检测中的应用
收稿日期: 2013-09-06
修回日期: 2013-10-26
网络出版日期: 2013-11-22
基金资助
国家自然科学基金(50905141);高等学校博士学科点专项科研基金(优先发展领域)(20126102130004);新世纪优秀人才支持计划(NCET-10-0078);西北工业大学基础研究基金(NPU-FFR-JC20110258)
Application of Array Wideband Lamb Wave in Structural Damage Detection
Received date: 2013-09-06
Revised date: 2013-10-26
Online published: 2013-11-22
Supported by
National Natural Science Foundation of China (50905141); Research Fund for the Doctoral Program of Higher Education of China (Priority Developing Area)(20126102130004); Program for New Century Excellent Talents in University (NCET-10-0078); NPU Foundation for Fundamental Research (NPU-FFR-JC20110258)
阵列信号处理中的空间谱估计可以对信号源进行辨别和定位,于是通过采集在结构上布置的阵列传感器Lamb波信号用来检测损伤发生的位置。通常,大多数空间谱估计方法均以窄带信号为假定,在很多基于Lamb波的结构损伤检测中,为了减小频散特性的影响,大多数研究以Lamb波为窄带信号进行分析,但无限窄的激励信号是物理不可实现的。因此,其在多数情况下Lamb波信号并不符合窄带信号假定,更应被认为是一种宽带信号来进行处理。进而利用空间谱估计中宽带信号非相干子空间处理方法(Incoherent Signal Subspace Method,ISM)中阵列接收的宽带Lamb波信号进行处理,检测出结构发生单一损伤时的损伤位置。随后,当结构损伤与边界反射波有叠加时会引起损伤信号相干,采用宽带信号相干子空间方法(Coherent Signal Subspace Method,CSM)对损伤位置进行检测,得到了较好的结果。
张宇 , 闫云聚 , 余龙 , 王建强 . 阵列宽带Lamb波在结构损伤检测中的应用[J]. 航空学报, 2014 , 35(3) : 780 -787 . DOI: 10.7527/S1000-6893.2013.0444
Spatial spectrum estimation in array signal processing could be used to identify and locate the signal source, so the structural damage is detected by the Lamb wave received from sensor array on structure in this paper. Generally, most of spatial spectrum estimation research are under the narrow band signal assumption, meanwhile, Lamb wave propagation in most research is considered as a kind of narrow band signal in order to reduce the wave dispersion effects. However, Lamb wave signal should be modulated as a kind of wideband signal because of unrealizable infinite narrow signal excitation. Thus, incoherent signal subspace method (ISM) is applied in array Lamb wave wideband signal processing so as to locate single structural damage in this paper. Then, coherent signal subspace method (CSM) is used when two damages occur since the damage reflected signals are coherent. The damage detection results show excellent accuracy.
[1] Krim H, Viberg M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
[2] Wang Y L, Chen H, Peng Y N, et al. Special spectrum estimation: theory and algorithm[M]. Beijing: Tsinghua University Press, 2009: 1-4. (in Chinese) 王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2009: 1-4.
[3] Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280.
[4] Gershman A B, Rübasmen M, Pesavento M. One- and two-dimensional direction-of-arrival estimation: an overview of search-free techniques[J]. Signal Processing, 2010, 90(5): 1338-1349.
[5] Zhao C H, Li G, Li F C. Research and development of wide-band direction finding[J]. Journal of Harbin Engineering University, 2006, 27(2): 129-135. (in Chinese) 赵春晖, 李刚, 李福昌. 宽带测向研究现状及展望[J]. 哈尔滨工程大学学报, 2006, 27(2): 129-135.
[6] Su Z Q, Ye L, Lu Y. Guided Lamb wave for identification of damage in composite structures: a review[J]. Journal of Sound and Vibration, 2006, 295(3-5): 753-780.
[7] Yu L, Cheng L, Su Z Q. Correlative sensor array and its applications to identification of damage in plate-like structures[J]. Structural Control and Health Monitoring, 2012, 19(8): 650-671.
[8] Giurgiutiu V, Bao J J. Embedded-ultrasonics structural radar for in situ structural health monitoring of thin-wall structures[J]. Structural Health Monitoring, 2004, 3(2): 121-140.
[9] Ostachowicz W, Kudela P, Malinowski P, et al. Damage localization in plate-like structures based on PZT sensors[J]. Mechanical Systems and Signal Processing, 2009, 23(6): 1805-1829.
[10] Su Y Z, Yuan S F, Wang Y. Impact localization in composite using multiple signal classification method[J]. Acta Materiae Composite Sinica, 2010, 27(3): 105-110. (in Chinese) 苏永振, 袁慎芳, 王瑜. 基于多重信号分类算法的复合材料冲击定位[J]. 复合材料学报, 2010, 27(3): 105-110.
[11] Li F C, Meng G. Dispersion analysis of Lamb waves with narrow frequency bands[J]. Acta Physica Sinica, 2008, 57(7): 4265-4272. (in Chinese) 李富才, 孟光. 窄频带Lamb波频散特性研究[J]. 物理学报, 2008, 57(7): 4265-4272.
[12] Alleyne D N, Cawley P. The interaction of Lamb waves with defects[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39(3): 381-396.
[13] Wax M, Shan T J, Kailath T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(4): 817-827.
[14] Wang H, Kaveh M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 823-831.
[15] Skolnik M. Introduction to radar systems[M]. 3rd ed. Zuo Q S, Xu G L, Ma L, et al., translated. Beijing: Publishing House of Electronics Industry, 2010: 20-23.(in Chinese) Skolnik M. 雷达系统导论[M]. 3版. 左群声, 徐国良, 马林, 等, 译. 北京: 电子工业出版社, 2010: 20-23.
[16] Stoica P, Nehorai A. MUSIC, maximum likelihood, and cramer-rao bound[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(5): 720-741.
[17] Su G N, Morf M. The signal subspace approach for multiple wide-band emitter location[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31(6): 1502-1522.
[18] Allam M, Moghaddamjoo A. Two-dimensional DFT projection for wideband direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1995, 43(7): 1728-1732.
[19] Bienvenu G, Fuerxer P, Vezzosi G, et al. Coherent wide band high resolution processing for linear array[C]//International Conference on Acousitics, Speech, and Signal Processing, 1989: 2799-2802.
[20] Sellone F. Robust auto-focusing wideband DOA estimation[J]. Signal Processing, 2006, 86(1): 17-37.
[21] Peng G, Yuan S F. Optimization for collocation of sensors in active Lamb wave-based monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 957-962. (in Chinese) 彭鸽, 袁慎芳. 主动Lamb波监测技术中的传感器元件优化布置研究[J]. 航空学报, 2006, 27(5): 957-962.
/
〈 | 〉 |