一种包含运动边界的高精度流场数值计算方法
收稿日期: 2013-08-27
修回日期: 2013-11-04
网络出版日期: 2013-11-22
基金资助
国家自然科学基金(51176005)
A Numerical Method for Simulating Flow Involving Moving Boundaries with High Order Accuracy
Received date: 2013-08-27
Revised date: 2013-11-04
Online published: 2013-11-22
Supported by
National Natural Science Foundation of China (51176005)
为了准确快速地模拟运动边界的流场,提出一种反馈力源形式的包含运动边界的非定常流场数值计算方法。该方法采用完全正交的网格,以反馈力源作用点的运动来模拟边界的运动。采用物理量及其各阶导数在边界两侧的突跃修正中心差分格式,使之达到二阶精度,以此离散求解二维不可压Navier-Stokes方程。并且提出了与运动边界相适应的反馈力源构造方法及对边界上速度进行插值的方法。基于此数值计算方法,对低雷诺数的圆柱绕流、静止流体中的振荡圆柱以及昆虫振翅运动的二维非定常流场进行了数值计算,计算结果与以往的数值及实验结果非常吻合,表明本文方法与Peskin的浸入式边界方法在处理运动边界问题时具有同样的高效率,且精度高于浸入式边界方法。
李秋实 , 徐飞 , 李志平 . 一种包含运动边界的高精度流场数值计算方法[J]. 航空学报, 2014 , 35(7) : 1815 -1824 . DOI: 10.7527/S1000-6893.2013.0456
To simulate a flow involving moving boundaries accurately and efficiently, this paper presents a numerical method for the simulation of moving boundary problems with a feedback force which is used to represent the effects of rigid boundaries. The method uses the movements of feedback forces to represent moving boundaries on a cartesian grid. The central difference scheme is corrected by incorporating the jump conditions of velocities and pressure to achieve second-order accuracy and the incompressible Navier-Stokes equation is solved. In addition, suitable methods for the construction of feedback forces and velocity interpolation on the boundaries are presented. Using this method, the paper simulated a flow passing a stationary cylinder and the flows subjected to an oscillating cylinder and a flapping insect wing at low Reynolds numbers. The results are consistent with previous numerical and experimental work. They show that the method is as efficient as Peskin's immersed boundary method when dealing with moving boundaries, but it achieves a higher-order of accuracy.
[1] Wu Y Z, Tian S L, Xia J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 15-26. (in Chinese) 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报, 2011, 32(1): 15-26.
[2] Peskin C S. Flow patterns around heart valves: a numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271.
[3] Gong Z X, Lu C J, Huang H X. Immersed boundary method and its application[J]. Chinese Quarterly of Mechanics, 2007, 28(3): 353-362. (in Chinese) 宫兆新, 鲁传敬, 黄华雄. 浸入边界法及其应用[J]. 力学季刊, 2007, 28(3): 353-362.
[4] Mittal R, Iaccarino G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261.
[5] Lai M C, Peskin C S. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity[J]. Journal of Computational Physics, 2000, 160(2): 705-719.
[6] Bandringa H. Immersed boundary methods. Groningen: Institute of Mathematics and Computing Science, University of Groningen, 2010.
[7] Leveque R J, Li Z L. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources[J]. SIAM Journal on Numerical Analysis, 1994, 31(4): 1019-1044.
[8] Lai M C, Li Z L. A remark on jump conditions for the three-dimensional Navier-Stokes equations involving an immersed moving membrane[J]. Applied Mathematics Letters, 2001, 14(2): 149-154.
[9] Xu S, Wang Z J. Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation[J]. SIAM Journal on Scientific Computing, 2006, 27(6): 1948-1980.
[10] Xu S, Wang Z J. An immersed interface method for simulating the interaction of a fluid with moving boundaries[J]. Journal of Computational Physics, 2006, 216(2): 454-493.
[11] Tan Z, Le D V, Lim K M, et al. An immersed interface method for the incompressible Navier-Stokes equations with discontinuous viscosity across the interface[J]. SIAM Journal on Scientific Computing, 2009, 31(3): 1798-1819.
[12] Le D V, Khoo B C, Peraire J. An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries[J]. Journal of Computational Physics, 2006, 220(1): 109-138.
[13] Karagiozis K, Kamakoti R, Pantano C. A low numerical dissipation immersed interface method for the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 2010, 229(3): 701-727.
[14] Zhu L D, Peskin C S. Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method[J]. Journal of Computational Physics, 2002, 179(2): 452-468.
[15] Zhang A M. Automatic control theory[M]. Beijing: Tsinghua University Press, 2005: 449-450. (in Chinese) 张爱民. 自动控制原理[M]. 北京: 清华大学出版社, 2005: 449-450.
[16] Zhong G H. Applications of a moving-boundary numerical simulation method in fluid-structure interaction problems. Beijing: School of Energy and Power Engineering, Beihang University, 2009. (in Chinese) 钟国华. 一种运动边界的数值模拟方法在流固耦合问题中的应用. 北京: 北京航空航天大学能源与动力工程学院, 2009.
[17] Coutanceau M, Bouard R. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation, Part 2: unsteady flow[J]. Journal of Fluid Mechanics, 1979, 79(2): 257-272.
[18] Liao C C, Chang Y W, Lin C A, et al. Simulating flows with moving rigid boundary using immersed-boundary method[J]. Computers & Fluids, 2010, 39(1): 152-167.
[19] Yang J, Balaras E. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries[J]. Journal of Computational Physics, 2006, 215(1): 12-40.
[20] Yang Y, Li D, Zhang Z H. Influences of flapping wing micro aerial vehicle unsteady motion on horizon tail[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1827-1833. (in Chinese) 杨茵, 李栋, 张振辉. 微型扑翼飞行器非定常运动对平尾的影响[J]. 航空学报, 2012, 33(10): 1827-1833.
[21] Wang Z J. Two dimensional mechanism for insect hovering[J]. Physical Review Letters, 2000, 85(10): 2216-2220.
/
〈 | 〉 |