流体力学与飞行力学

椭圆三体问题下月球L2低能逃逸轨道设计

  • 荆武兴 ,
  • 刘玥
展开
  • 哈尔滨工业大学 航天学院, 黑龙江 哈尔滨 150001
荆武兴男,博士,教授,博士生导师。主要研究方向:空间飞行器导航、制导与控制。Tel:0451-86418233 E-mail:jingwuxing@hit.edu.cn;刘玥男,博士研究生。主要研究方向:深空探测轨道设计与控制。Tel:13766801497 E-mail:panzerkampfwagen@163.com

收稿日期: 2013-07-25

  修回日期: 2013-10-17

  网络出版日期: 2013-11-22

基金资助

国家自然科学基金(11172077);国家自然科学基金创新研究群体项目(61321062)

Designing of the Optimal Energy Escaping Orbit from Moon L2 Point in Elliptical Three-body Problem

  • JING Wuxing ,
  • LIU Yue
Expand
  • School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2013-07-25

  Revised date: 2013-10-17

  Online published: 2013-11-22

Supported by

National Nature Science Foundation of China (11172077); Innovative Team Program of the National Nature Science Foundation of China (61321062)

摘要

针对圆形限制性三体问题下求解月球探测器逃逸轨道时,不能充分利用月球椭圆公转动力学特性节约逃逸能量的问题,对动力学模型进行拓展,在椭圆三体问题下建立月球探测器轨道动力学方程与能量表达式。首先通过理论推导,求解了探测器逃逸所需的发射能量与逃逸过程中的轨道能量随月地椭圆相对运动状态的数学表达式,对其进行分析发现,同一环月轨道上出发的逃逸探测器所需发射能量与地月距离呈正相关,而逃逸过程中探测器轨道能量变化与地月相向运动速度呈正相关,从而得出在月球接近其近地点过程中发射逃逸探测器可以最大限度节约发射能量的结论。在此基础上,引入庞加莱截面法设计探测器最低能量逃逸轨道。通过寻找使逃逸轨道所在不变流形的庞加莱截面收缩为一点的发射位置与能量,求解不同地月相位下的逃逸轨道能量需求,进而迭代求解能量最优逃逸轨道。最终,通过对比仿真结果得到,月球真近角为283°时发射逃逸探测器将最节约能量,与理论推导的结果相吻合。相对于圆形限制性三体问题下推导的最低逃逸能量,采用椭圆三体模型设计的低能量逃逸轨道可以节约8%左右的发射能量,对于深空探测等任务来说具有明显优势。

本文引用格式

荆武兴 , 刘玥 . 椭圆三体问题下月球L2低能逃逸轨道设计[J]. 航空学报, 2014 , 35(6) : 1496 -1504 . DOI: 10.7527/S1000-6893.2013.0433

Abstract

To solve the problem that it is hard to save energy by making full use of the elliptical orbit dynamics of the Earth-Moon system in the escaping orbit design of a moon probe under a circular restricted three-body environment, a dynamic model is extended to an elliptical three-body model for which the dynamic equation and the orbit energy is given. The relationship between the orbit energy of the probe and the Moon's phase is constructed by deriving the variation of the orbit energy during the escaping process. It is found that from the same original cislunar orbit, the launching energy will change mainly with the distance between the Earth and the Moon while the energy variation during the escaping process is closely related with the Earth-Moon relative speed. Then it is concluded that the optimal escaping orbit exists when the Moon comes close to its perigee. To design the optimal escaping orbit the Poincare section method is introduced. By solving the relationship between the Moon's phase and the corresponding energy need for escaping, the optimal solution is given with iteration. From the simulation it is found that when the Moon's true anomaly reaches 283°, up to 8% of energy can be saved with the elliptical three body model as compared with the circular restricted three-body model, which is in good agreement with the theoretical results, and the advantage is obvious.

参考文献

[1] Qian Y J, Jing W X, Gao C S, et al. Autonomous orbit determination for quasi-periodic orbit about the translunar libration point[J]. Journal of Astronautics, 2013, 34(5): 625-633. (in Chinese) 钱霙婧, 荆武兴, 高长生, 等.地月平动点拟周期轨道探测器自主导航方法研究[J].宇航学报, 2013, 34(5): 625-633.

[2] Jing W X, Qian Y J, Gao C S, et al. Autonomous navigation to quasi-periodic orbits near translunar libration points [J]. Chinese Journal of Aeronautics, 2013, 26(5): 1259-1268.

[3] Li M D, Jing W X. Translunar low-energy trajectories via Earth-Moon L1 Lyapunov orbit//IEEE International Conference on Robotics and Biomimetics, 2007: 941-945.

[4] Chao N, Li Y J. Study of low energy transfer to moon of L1 point in Earth-Moon system[J]. Computer Measurement & Control, 2010, 18(7): 1633-1636. (in Chinese) 晁宁, 李言俊.地月系拉格朗日L1点低能探月轨道分析[J].计算机测量与控制, 2010, 18(7): 1633-1636.

[5] Parker J S, Anderson R L. Targeting low-energy transfers to low lunar orbit[J]. Acta Astronautica, 2013, 84(1): 1-14.

[6] David C F, Mark W, Kathleen H, et al. Applications of multi-body dynamical environments: the ARTEMIS transfer trajectory design[J].Acta Astronautica, 2012, 73(12): 237-249.

[7] Ivashkin V V. On particle's trajectories of Moon-to-Earth space flights with the gravitational escape from the lunar attraction[J]. Doklady Physics, 2004, 49(9): 539-542.

[8] Ivashkin V V. Low energy trajectories for the Moon-to-Earth space flight[J].Journal of Earth System Science, 2005, 114(6): 613-618.

[9] He W, Xu S J. Study on escaping energy in circular restricted three-body problem[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(12): 263-268. (in Chinese) 何巍, 徐世杰.基于圆型限制性三体问题模型的行星卫星逃逸能量研究[J].航空学报, 2007, 28(12): 263-268.

[10] Zhou J, Cai L, Zhou F Q.Computations of low energy escaping capturing trajectories in Hill's region via an extended Poincare map[J].Journal of Astronautics, 2007, 28(3): 643-647.

[11] Luo Q Q, Han C. Solution algorithm of the three-body lambert problem with gravity assist maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 679-682. (in Chinese) 罗钦钦, 韩潮. 包含引力辅助变轨的三体 Lambert 问题求解算法[J]. 北京航空航天大学学报, 2013, 39(5): 679-682.

[12] Zhang H Q, Li Y J. Design of L1 Earth low energy transfer trajectory in earth-moon three-body problem[J]. Journal of Harbin Institute of Technology, 2011, 43(5): 84-88. (in Chinese) 张汉清, 李言俊.地月三体问题下L1地球低能转移轨道设计[J].哈尔滨工业大学学报, 2011, 43(5): 84-88.

[13] Qi R, Xu S J. Time-dependent invariant manifolds in the restricted four-body problem[J]. Journal of Astronautics, 2013, 34(8): 1055-1062. (in Chinese) 祁瑞, 徐世杰. 限制性四体问题中的时间相关不变流形[J]. 宇航学报, 2013, 34(8): 1055-1062.

[14] Jing W X, Gao C S. Precise relative dynamics model of a lunar probe and its application[J]. Scientia Sinica Phys, Mech & Astron, 2010, 40(4): 462-470. (in Chinese) 荆武兴, 高长生.月球探测器精确相对动力学模型及其应用[J].中国科学:物理学 力学 天文学, 2010, 40(4): 462-470.

[15] Liu G, Huang J, Ma G, et al. Nonlinear dynamics and station-keeping control of a rotating tethered satellite system in halo orbits[J]. Chinese Journal of Aeronautics, 2013, 26(5): 1227-1237.

[16] Howard D C. Orbital mechanics for engineering students[M]. Norfolk: Butterworth-Heinemann Press, 2009: 80-110.

文章导航

/