7085铝合金残余应力及加工变形的数值仿真与试验
收稿日期: 2013-09-05
修回日期: 2013-11-16
网络出版日期: 2013-11-20
基金资助
国防技术基础科研项目(C1520120002,J1520130001);高等学校博士学科点专项科研基金(20123218120025);中央高校基本科研业务费专项资金(NS2012011)
Numerical Simulation and Test of Bulk Residual Stress and Machining Distortion in Aluminum Alloy 7085
Received date: 2013-09-05
Revised date: 2013-11-16
Online published: 2013-11-20
Supported by
Defense Industrial Technology Development Program (C1520120002, J1520130001); Research Fund for the Doctoral Program of Higher Education of China (20123218120025); The Fundamental Research Funds for the Central Universities (NS2012011)
毛坯残余应力的测量以及零件的加工变形分析是航空整体结构件数控加工工艺研究的难题。应用MSC.Marc软件对某型飞机主起支撑接头的7085铝合金锻件毛坯的淬火-压缩工艺进行了数值仿真,获得了毛坯残余应力分布趋势;应用X射线衍射法与钻孔法测量了毛坯表层残余应力分布,提出了基于系数修正法的毛坯残余应力分析方法,通过最小二乘法(LSM)拟合仿真值与试验值以获得应力修正系数,并对毛坯残余应力分布的仿真结果进行修正,获得了实际毛坯的残余应力分布;由此进行了主起支撑接头缩比零件加工变形仿真与验证试验。研究结果表明:7085铝合金块状毛坯残余应力数值仿真结果与测试结果的趋势吻合,为应力修正提供了物理基础;相对于未修正的应力分布,基于修正后的应力分布仿真获得的变形结果精度提高了50%;7085-T7452铝合金的毛坯残余应力是导致主起支撑接头加工变形的主要因素。
杨吟飞 , 张峥 , 李亮 , 何宁 , 赵威 . 7085铝合金残余应力及加工变形的数值仿真与试验[J]. 航空学报, 2014 , 35(2) : 574 -581 . DOI: 10.7527/S1000-6893.2013.0469
Bulk residual stress and machining distortion of aluminum parts are major concerns in the manufacturing of aerospace monolithic components. The quenching and cold compression residual stresses of main support device for landing gear made from aluminum alloy 7085 are simulated using MSC.Marc software. The surface residual stress of specimen is measured using both X-ray diffraction and hole drilling method. By comprising residual stress between simulation and measurement, residual stress simulation is corrected using least squares method (LSM). Then the machining distortion simulation and experiment are carried out on scaled part based on the coefficient corrected residual stress. The results indicate that the stress distribution tendencies in specimen are quite similar between simulation and measurement; X-ray diffraction and hole drilling method results are found in a good agreement with each other; the analytical accuracy based on the corrected residual stress using LSM is enhanced by about 50% on predicting machining distortion. Machining distortion can be mainly attributed to bulk residual stress within material.
[1] Wang Z J, Chen W Y, Zhang Y D, et al. Study on the machining distortion of thin-walled part caused by redistribution of residual stress[J]. Chinese Journal of Aeronautics, 2005, 18 (2): 175-179.
[2] Peng Q, Chen G N, Wu C W, et al. Laser-assisted pre-stress forming for integral panels[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8): 1544-1548. (in Chinese) 彭青, 陈光南, 吴臣武, 等. 整体壁板激光辅助预应力成形[J]. 航空学报, 2009, 30 (8): 1544-1548.
[3] Wang Q C, Ke Y L, Zhang Q F. Evaluation of residual stress depth profiling in 7075 aluminum alloy plates[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(4): 336-338. (in Chinese) 王秋成, 柯映林, 章巧芳. 7075 铝合金板材残余应力深度梯度的评估[J]. 航空学报, 2003, 24(4): 336-338.
[4] Brinksmeier E, Cammett J T, Konig W, et al. Residual stress-measurement and cause in machining process[J]. Annals of the CIRP, 1982, 31(2): 491-509.
[5] Zhu C Z, Luo J Y, Li D F, et al. Numerical simulation and experimental investigation of the aluminium alloy quenching-induced residual stress by considering the flow stress characteristic[J]. Journal of Mechanical Engineering, 2010, 46(22): 41-46. (in Chinese) 朱才朝, 罗家元, 李大峰, 等. 基于流变应力特性的铝合金淬火残余应力数值模拟及试验研究[J]. 机械工程学报, 2010, 46(22): 41-46.
[6] Zhu C Z, Luo J Y, Li D F, et al. Numerical simulation and experimental investigation of the aluminium alloy quenching process by considering the flow stress characteristic[J]. Journal of Mechanical Engineering, 2011, 47(24): 57-62. (in Chinese) 朱才朝, 罗家元, 李大峰, 等. 7075铝合金预拉伸板工艺研究[J]. 机械工程学报, 2011, 47(24): 57-62.
[7] Prime M B, Hill M R. Residual stress, stress relief, and inhomogeneity in aluminum plate[J]. Scripta Materialia, 2002, 46(1): 77-82.
[8] Robinson J S, Hossain S, Truman C E, et al. Residual stress in 7449 aluminium alloy forgings[J]. Materials Science and Engineering:A, 2010, 527(10-11): 2603-2612.
[9] Wang S H. Analysis and reduction quenching residual stress of 7085 aluminum alloy integral structure parts[D]. Changsha: College of Material Science & Technology, Central South University, 2011. (in Chinese) 王少辉. 7085铝合金整体结构件淬火残余应力分析及其消减工艺研究[D]. 长沙:中南大学材料学院, 2011.
[10] Xu X J, Wu G C, Wang S, et al. Strengthening of 7085 Al alloy by large strain deformation with the alloy preheated at solution treatment temperature[J].Journal of Shanghai Jiaotong University, 2011, 45(6): 911-919. (in Chinese) 许晓静, 吴桂潮, 王杉, 等. 7085 铝合金固溶温度预热后的大应变变形强化[J]. 上海交通大学学报, 2011, 45(6): 911-919.
[11] American Society for Testing and Materials. E837-08 Standard test method for determining residual stresses by the hole-drilling strain-gage method[S]. Pennsylvania: ASTM International, 2008.
[12] Wang Y Q. Research on analytical and numerical simulation for machining distortion of aircraft structural parts. Beijing: School of Mechanical Engineering and Automation, Beihang University, 2007. (in Chinese) 王运巧. 飞机结构件加工变形分析及数值仿真研究. 北京: 北京航空航天大学机械工程及自动化学院, 2007.
[13] Mei Z Y, Gao H, Wang Y Q. Analyzing and controlling distortion of aircraft aluminium alloy structural part in NC machining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 146-150. (in Chinese) 梅中义, 高红, 王运巧. 飞机铝合金结构件数控加工变形分析与控制[J]. 北京航空航天大学学报, 2009, 35(2): 146-150.
[14] Zhang H W, Zhang Y D, Zhao X C, et al. Key techniques in simulation of machining distortion for aeronautical monolithic component[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(2): 239-243. (in Chinese) 张洪伟, 张以都, 赵晓慈, 等. 航空结构件加工变形仿真关键技术[J]. 北京航空航天大学学报, 2008, 34(2): 239-243.
[15] Wang Z J. Research on machining distortion based on the relief and redistribution of residual stresses. Beijing: School of Mechanical Engineering and Automation, Beihang University, 2005.(in Chinese) 王兆峻. 基于残余应力释放与重分布的薄壁零件加工变形研究. 北京:北京航空航天大学机械工程及自动化学院, 2005.
/
〈 | 〉 |