亚声速翼身融合无人机概念外形参数优化
收稿日期: 2013-07-08
修回日期: 2013-10-12
网络出版日期: 2013-11-16
基金资助
国防基础科研计划(A2520110006);中央高校基本科研业务费专项资金(NJ20130001,NZ2012014)
Configuration Optimization of Subsonic Blended Wing Body UAV Conceptual Design
Received date: 2013-07-08
Revised date: 2013-10-12
Online published: 2013-11-16
Supported by
National Defense Basic Scientific Research Program of China(A2520110006); The Fundamental Research Funds for the Central Universities (NJ20130001, NZ2012014)
为了兼顾翼身融合(BWB)布局无人机(UAV)的气动、隐身和结构重量要求,应用优化方法研究了某亚声速翼身融合无人机概念方案的外形设计问题。外形优化设计流程包括全机参数化几何外形模型、气动分析、机翼根部弯矩计算、雷达散射截面(RCS)分析、代理模型的建立和外形参数优化计算。选择了三种不同优化目标研究翼身融合无人机外形优化问题:①未配平状态升阻比最大;②配平状态升阻比最大;③配平状态升阻比尽量大和机翼弯矩尽量小。通过优化结果的对比分析,揭示了配平约束和机翼弯矩目标对优化设计结果的影响。研究结果表明:计入配平约束能够有效提高配平升阻比;将配平状态升阻比尽量大和机翼根部弯矩尽量小作为优化目标能够获得合理的优化外形。
邓海强 , 余雄庆 . 亚声速翼身融合无人机概念外形参数优化[J]. 航空学报, 2014 , 35(5) : 1200 -1208 . DOI: 10.7527/S1000-6893.2013.0431
A configuration optimization method for a notional subsonic unmanned aerial vehicle (UAV) with a blended wing body (BWB) is proposed for simultaneous considerations of the requirements of aerodynamics, stealth and structural mass. The process of the configuration optimization consists of parametric configuration modeling, analysis for the aerodynamic characteristics, computation of the wing bending moment, prediction of radar cross section (RCS), creation of the surrogate model and optimization for the configuration parameters. Three cases with different design objectives for the configuration optimization of the blended wing body unmanned aerial vehicle are studied: ① maximization for the lift to drag ratio without the trim constraint; ② maximization for the lift to drag ratio with the trim constraint; and ③ maximization for the lift to drag ratio and minimization for the wing bending moment with the trim constraint. Impacts of the trim constraint and the wing bending moment on the optimal designs are investigated through the comparisons of the optimal results. It concludes that the inclusion of the trim constraint can increase the lift to drag ratio of the unmanned aerial vehicle configuration under the trim condition, and the lift to drag ratio and wing bending moment should be simultaneously considered as the design objectives to obtain a practicaloptimal configuration of the blended wing body unmanned aerial vehicle.
[1] Liebeck R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1): 10-25.
[2] Zhu Z Q, Wang X L, Wu Z C, et al. A new type of transport-blended wing body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 49-59. (in Chinese) 朱自强, 王晓璐, 吴宗成, 等. 民机的一种新型布局形式——翼身融合体飞机[J]. 航空学报, 2008,29(1): 49-59.
[3] Zhang S G, Lu Y H, Gong L, et al. Research on design of stability and control of a 250-seat tailless blended-wing-body civil transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1761-1769. (in Chinese) 张曙光, 陆艳辉, 巩磊, 等. 250座级翼身融合无尾布局客机操稳特性设计研究[J]. 航空学报, 2011, 32(10): 1761-1769.
[4] Li P F, Zhang B Q, Chen Y C, et al. Aerodynamic design methodology for blended wing body transport[J]. Chinese Journal of Aeronautics, 2012, 25(4): 508-516.
[5] Lee D S, Gonzalez L F, Auld D J, et al. Aerodynamic/RCS shape optimisation of unmanned aerial vehicles using hierarchical asynchronous parallel evolutionary algorithms, AIAA-2006-3331. Reston: AIAA, 2006.
[6] Lee D S, Gonzalez L F, Srinivas K, et al. Multi-objective/multidisciplinary design optimisation of blended wing body UAV via evolutionary algorithms, AIAA-2007-0036. Reston: AIAA, 2007.
[7] Lee D S, Gonzalez L F, Periaux J, et al. Efficient hybrid-game strategies coupled to evolutionary algorithms for robust multidisciplinary design optimization in aerospace engineering [J]. IEEE Transactions on Evolutionary Computation, 2011, 15(2): 133-150.
[8] Wang M L, Gao Z H, Xia L. Influence of aerodynamic and stealth performance computation precision on aircraft optimizattion design[J]. Flight Dynamics, 2009, 27(6): 14-17. (in Chinese) 王明亮, 高正红, 夏露. 气动与隐身性能计算精度对飞行器设计的影响[J]. 飞行力学, 2009, 27(6): 14-17.
[9] He K F, Qian W Q, Chen J Q, et al. Integrated aircraft design of aerodynamic and stealty performance with numerically solving fluid dynamics and electro-magnetics equations[J]. Acta Aerodynamic Sinica, 2009, 27(2): 180-185. (in Chinese) 何开锋, 钱炜祺, 陈坚强, 等. 基于流体力学和电磁学方程数值求解的飞行器气动隐身一体化设计[J]. 空气动力学学报, 2009, 27(2): 180-185.
[10] Hu T Y, Yu X Q. Integrated design of aerodynamic and stealthy performance based on parametric CAD model[J]. Journal of Astronautics, 2009, 30(1): 123-126. (in Chinese) 胡添元, 余雄庆. 基于参数化CAD模型的飞行器气动/隐身一体化设计[J]. 宇航学报, 2009, 30(1): 123-126.
[11] Queipo N V, Haftka R T, Shyy W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1): 1-28.
[12] Simpson T W, Toropov V, Balabanov V, et al. Design and analysis of computer experiments in multidisciplinary design optimization-a review of how far we have come-or not, AIAA-2008-5802. Reston: AIAA, 2008.
[13] Kulfan B. Universal parametric geometry representation method [J]. Journal of Aircraft, 2008, 45(1): 142-158.
[14] Carmichael R L,Erickson L L. PAN AIR-a higher order panel method for predicting subsonic or supersonic linear potential flows about arbitrary configurations, AIAA-1981-1255. Reston: AIAA, 1981.
[15] Mason W H. Software for aerodynamics and aircraft design. (2007-03-27). http://www.aoe.vt.edu/~mason/Mason_f/MRsoft. html.
[16] Aircraft Design Manual General Editorial Board. Aircraft design manual 6:aerodynamic design[M]. Beijing: Aviation Industry Press, 2002: 311-312. (in Chinese) 飞机设计手册总编委会. 飞机设计手册(第6册)-气动设计[M]. 北京: 航空工业出版社, 2002: 311-312.
[17] Youssef N N. Radar cross section of complex targets [J]. Proceedings of the IEEE, 1989, 77(5): 722-734.
[18] Jin R, Chen W, Simpson T W. Comparative studies of metamodeling techniques under multiple modeling criteria [J]. Journal of Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13.
/
〈 | 〉 |