基于机翼-帆尾的高纬度跨年驻留太阳能飞机总体参数设计方法
收稿日期: 2013-09-04
修回日期: 2013-10-12
网络出版日期: 2013-11-06
基金资助
国家自然科学基金(11202162)
Primary Parameters Determination for Year-round Solar-powered Aircraft of Wing-sail Type at Higher Latitudes
Received date: 2013-09-04
Revised date: 2013-10-12
Online published: 2013-11-06
Supported by
National Natural Science Foundation of China(11202162)
拓展太阳能飞机在较高纬度地区的跨年驻留性能有助于促成太阳能飞机的广泛实用化。建立了适用于任意高度、任意纬度、任意指向的光伏组件面功率模型,并考虑了光伏组件的温度效应,通过能量仿真得出:在方位角跟踪方式下,滚偏角为90°的主动式光伏组件的日均面功率最优。然后在布局与能源综合设计思想指导下,建立了一套基于机翼-帆尾的太阳能飞机总体参数设计方法,其组成模块包括各部件质量方程、气动效率方程、用于构建气动布局参数与全机光伏组件面功率特性之间映射关系的Kriging代理模型,以及参与总体参数匹配优化设计的量子粒子群优化(QPSO)算法及其多目标评价函数。面向高纬度与跨年驻留的设计指标,开展了机翼-帆尾太阳能飞机的方案实例设计,其中驻留纬度与高度指标分别为45°N和18 km。详细分析了此方案在23.5°N~55°N纬度域内的可持续高度包线。研究结果表明:与传统布局形式相比,机翼-帆尾布局形式大幅提升了高纬度地区冬季附近的光伏组件面功率,有效地减小了翼展尺度、机翼面积并提升了巡航速度,具有良好的应用优势。方案设计实例也验证了基于机翼-帆尾的太阳能飞机总体参数设计方法的可行性。
昌敏 , 周洲 , 王睿 . 基于机翼-帆尾的高纬度跨年驻留太阳能飞机总体参数设计方法[J]. 航空学报, 2014 , 35(6) : 1592 -1603 . DOI: 10.7527/S1000-6893.2013.0425
Exploration of the capability of a solar-powered aircraft for year-round station keeping at higher latitudes is of great significance for the enhancement of its operational value. In this paper a model of power area density for PV modules arbitrarily oriented is first established which takes into consideration the temperature of the PV modules, flight altitude, flight latitude, and year-round seasons. The analysis on power absorption shows that the rotation angle of 90° is the optimal in the azimuth tracking method for a pair of sail tails in use. Secondly, a conceptual design methodology of solar-powered aircraft of a wing-sail configuration is developed which integrates the configuration design with energy absorption, and its formulations include mass component parameterization, aerodynamic efficiency, Kriging surrogate model and quantum behaved particle swarm optimization (QPSO) algorithm and its fitness function. Thirdly, a comparison of design methodology is conducted for the wing-sail configuration and wing-only configuration. Finally, a case study of the wing-sail configuration is conducted at the latitude of near 45°N and the altitude of higher than 18 km and its capabilities of operational altitude, payload-carrying and operational latitude in a whole year are investigated from 23.5°N to 55°N. The results show that in contrast with the traditional configuration, the wing-sail configuration improves power absorption characteristics at higher latitudes near winter, shortens the wingspan and reduce the wing area effectively, improves cruise velocity and makes year-round operation at higher latitudes feasible and efficient. These applications demonstrate the validity of the proposed design methodology of primary parameters of the wing-tail configuration solar-powered aircraft.
[1] Bailey M D, Bower M V. High altitude solar power platform, NASA/TM-103578. Washington D.C.: NASA, 1992.
[2] Steven A, Fred B, Gilliam T. Design analysis methodology for solar-powered aircraft[J]. Journal of Aircraft, 1995, 32(4): 703-709.
[3] Rizzo E, Frediani A. A model for solar powered aircraft preliminary design[J]. The Aeronautical Journal, 2008, 112(1128): 57-78.
[4] Noth A. Design of solar powered airplanes for continuous flight[M]. Suisse: Ecole Polytechnique Fédérale de Lausanne at ETH ZüRICH, 2008: 37-112.
[5] Chang M, Zhou Z, Zheng Z C. Flight principles of solar-powered airplane and sensitivity analysis of its conceptual parameters[J]. Journal of Northwestern Polytechnical University, 2010, 28(5): 792-796. (in Chinese) 昌敏, 周洲, 郑志成. 太阳能飞机原理及总体参数敏度分析[J]. 西北工业大学学报, 2010, 28(5): 792-796.
[6] Shiau J K, Ma D M, Chiu C W. Optimal sizing and cruise speed determination for a solar-powered airplane[J]. Journal of Aircraft, 2010, 47(2): 622-629.
[7] Noll T E, Brown J M, Marla E, et al. Investigation of the Helios prototype aircraft mishap. Hampton VA: Langley Research Center, 2004.
[8] Chang M, Zhou Z, Cheng K, et al. Exploring the characteristics of power density of tracking PV modules for high-altitude stationary solar-powered airplanes[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 273-281. (in Chinese) 昌敏, 周洲, 成柯, 等. 高空驻留太阳能飞机主动式光伏组件面功率特性研究[J]. 航空学报, 2013, 34(2): 273-281.
[9] Durisch W, Urban J, Pmestad G. Characterisation of solar cells and modules under actual operating conditions[J]. Renewable Energy, 1996, 8(1-4): 359-366.
[10] Incropera F P, Dewitt D P. Fundamentals of heat and mass transfer[M]. 7th ed. New York: John Wiley & Sons, 2011: 594-629
[11] Lophaven S N, Nielsen H B, Sndergaard J. DACE—a MATLAB Kriging toolbox, Technical Report IMM-TR-2002-12. Denmark: Technical University of Denmark, 2002.
[12] Sun M J, Zhan H. Synthesis airfoil optimization by particle swarm optimization based on global information[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2166-2173. (in Chinese) 孙美建, 詹浩. 基于全局信息的粒子群算法翼型综合优化设计[J]. 航空学报, 2010, 31(11): 2166-2173.
[13] Sun J, Feng B, Xu W B. Particle swam optimization with particles having quantum behavior//IEEE Proceeding of Congress on Evolutionary Computation, 2004.
[14] Brown S F. The eternal airplane[J]. Popular Science, 1994, 244(4): 70-75.
[15] Hall D, Fortenbach C, Dimiceli E, et al. A preliminary study of solar powered aircraft and associated power trains, NASA-CR-3699. Washington D.C.: NASA, 1983.
[16] Raymer D P. Aircraft design: a conceptual approach[M]. 3rd ed. Washington D.C.: American Institute of Aeronautics and Astronautics, Inc., 1999: 280-289.
[17] Anderson J D, Jr. Fundamentals of aerodynamics[M]. New York: McGraw-Hill International Editions, 1991: 193-226.
[18] Haws T D, Bowman W J. Thermal analysis of the pathfinder aircraft, AIAA-1999-0735. Reston: AIAA, 1999.
[19] Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (Version 39)[J]. Progress in Photovoltaics: Research and Applications, 2012, 20: 12-20.
/
〈 | 〉 |