微振动隔振器动态阻尼系数的测试方法
收稿日期: 2013-04-17
修回日期: 2013-10-07
网络出版日期: 2013-10-24
基金资助
CAST创新基金(CAST201208);国防基础科研计划(B2120110011)
A Test Method of Dynamic Damping Coefficient of Micro-vibration Isolators
Received date: 2013-04-17
Revised date: 2013-10-07
Online published: 2013-10-24
Supported by
CAST Innovation Foundation of China (CAST201208); Defense Basic Research Program (B2120110011)
阻尼系数的确定对于隔振设计非常重要。针对大阻尼黏性流体微振动隔振器,提出一种确定三参数模型阻尼系数的机械阻抗等效理论与测试方法,将三参数模型简化为等效的便于试验测试的两参数隔振模型。将由自行设计的试验系统测量得到的阻尼系数和刚度系数输入到ADAMS仿真模型中,得到等效阻尼系数,并与直接采用迟滞环法得到的隔振器的等效阻尼系数进行对比分析。研究结果显示,两种方法得到的结果具有良好的一致性,证明了本文方法的可行性和可用性。本文方法还可得到以往传统方法难以得到的动态阻尼系数随频率的变化规律,对于隔振设计具有重要的参考价值。由于提出简化的等效模型,使得隔振器阻尼系数的测试更加快捷方便,本方法可推广应用于具有更多参数的隔振器阻尼系数的测量。
王杰 , 赵寿根 , 吴大方 , 罗敏 . 微振动隔振器动态阻尼系数的测试方法[J]. 航空学报, 2014 , 35(2) : 454 -460 . DOI: 10.7527/S1000-6893.2013.0414
The determination of the damping coefficient is very important for vibration isolation design. For large damping viscous fluid micro-vibration isolators, this paper presents a new equivalence theory and method to measure the damping coefficient of a three-parameter isolation model. Based on the equality of mechanical impedance, an equivalent two-parameter physical system which can be easily tested is obtained from the three-parameter isolation model. The measured damping coefficient and stiffness coefficient from a self-designed test setup are input into an ADAMS simulation model, and then the equivalent damping coefficient of this simulation is compared with that directly received from a hysteretic loop test. The results show great consistency between simulation and measurement and thus prove the validity and feasibility of this method. The variation of dynamic damping coefficient with frequency is also obtained,which is difficult for traditional methods to obtain and will be valuable for the design of vibration isolation. Thus, it becomes convenient to conduct measurements of damping coefficients of micro-vibration isolators because of the simplified model. Furthermore, the method can also be applied to isolators with more parameters to measure damping coefficients.
[1] Cobb R G, Sullivan J M, Das A, et al. Vibration isolation and suppression system for precision payloads in space[J]. Smart Materials and Structures, 1999, 8(6): 798-812.
[2] Zhang Y, Xu S J. Dual-stage passive vibration isolation system of optical payloads for high resolution remote sensing satellite[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1643-1654. (in Chinese) 张尧, 徐世杰. 星上光学有效载荷的两级隔振研究[J]. 航空学报, 2012, 33(9): 1643-1654.
[3] Sullivan J M, Gooding J C, Idle M K, et al. Performance testing for an active/passive vibration isolation and steering system, AIAA-1996-1210-CP[R]. Reston: AIAA, 1996.
[4] Vaillon L, Philippe C. Passive and active microvibration control for very high pointing accuracy space systems[J]. Smart Materials and Structures, 1999, 8(6): 719-728.
[5] Hyde T T, Anderson E H. Actuator with built-in viscous damping for isolation and structural control[J]. AIAA Journal, 1996, 34(1): 129-135.
[6] Boyd J, Hyde T T, Osterberg D, et al. Performance of a launch and on-orbit isolator[C]//SPIE's 8th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, 2001: 433-440.
[7] Davis L P, Carter D R, Hyde T T. Second-generation hybrid D-strut[C]//Smart Structures & Materials'95. International Society for Optics and Photonics, 1995: 161-175.
[8] Davis L P, Cunningham D, Bicos A S, et al. Adaptable passive viscous damper: an adaptable D-StrutTM[C]//Proceedings of SPIE 2193, Smart Structures and Materials 1994: Passive Damping, 1994: 47-58.
[9] Davis P, Cunningham D, Harrell J. Advanced 1.5 Hz passive viscous isolation system[C]//35th AIAA SDM Conference, 1994: 1-11.
[10] Yan J K. Mechanical vibration isolation technology[M]. Shanghai: Shanghai Science and Technology Literature Publishing House, 1985: 21-60. (in Chinese) 严济宽. 机械振动隔离技术[M]. 上海: 上海科学技术文献出版社, 1985: 21-60.
[11] Dai D P. Damping vibration and noise reduction technology[M]. Xi'an: Xi'an Jiaotong University Press, 1986: 53-107. (in Chinese) 戴德沛. 阻尼减振降噪技术[M]. 西安: 西安交通大学出版社, 1986: 53-107.
[12] Anderson E, Trubert M, Fanson J, et al. Testing and application of a viscous passive damper for use in precision truss structures[C]//Proceeding of the 32nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1991: 8-10.
[13] Oh H U, Izawa K, Taniwaki S. Development of variable-damping isolator using bio-metal fiber for reaction wheel vibration isolation[J]. Smart Materials and Structures, 2005, 14(5): 928-933.
[14] Rittweger A, Albus J, Hornung E, et al. Passive damping devices for aerospace structures[J]. Acta Astronautica, 2002, 50(10): 597-608.
[15] Jia J H, Shen X Y, Du J Y, et al. Design and experimental research on fluid viscous dampers[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6): 194-198. (in Chinese) 贾九红, 沈小要, 杜俭业, 等. 粘性流体阻尼器的设计与试验[J]. 机械工程学报, 2008, 44(6): 194-198.
[16] Duan Q, Xu H. Experiments study for dynamic features of rotational silicon oil damper[J]. Chinese Journal of Applied Mechanics, 2001, 18(2): 124-127. (in Chinese) 段权, 徐晖. 旋转式硅油阻尼器动态特性实验研究[J]. 应用力学学报, 2001, 18(2): 124-127.
[17] Ciero M K. Design of a fluid elastic actuator with application to structure control[D].Cambridge, MA: Department of Aeronautics and Astronautics, Massachussetts Institude of Technology, 1993.
/
〈 | 〉 |