高超声速飞行器表面测热技术综述
收稿日期: 2013-06-14
修回日期: 2013-09-20
网络出版日期: 2013-10-09
基金资助
国家自然科学基金(91016029,91216302,11272107)
Overview of Heat Measurement Technology for Hypersonic Vehicle Surfaces
Received date: 2013-06-14
Revised date: 2013-09-20
Online published: 2013-10-09
Supported by
National Natural Science Foundation of China (91016029, 91216302, 11272107)
高超声速飞行中飞行器表面气动加热量是飞行器热防护系统最为关键的设计输入,在理论计算与地面模拟的有限近似条件下,通过飞行试验实时获取真实环境下飞行器表面的气动加热量,并在此基础上完成对计算模型与地面试验的验证与改进具有重要意义。详细列举了20世纪50年代以来,国外具有代表性的飞行试验与测热方案。以“内置式”与“嵌入式”作为测热技术的分类特征,介绍了各类测试设备及相应的飞行试验结果。着重分析了“热匹配性”与“结构匹配性”作为关键因素对飞行测热技术的影响,通过飞行试验实例介绍了该问题的解决方法及工程经验。归纳了飞行测热技术发展的共性、特点与未来趋势,并结合当前我国发展现状,对该领域未来研究提出建议。
孟松鹤 , 丁小恒 , 易法军 , 朱燕伟 , 解维华 . 高超声速飞行器表面测热技术综述[J]. 航空学报, 2014 , 35(7) : 1759 -1775 . DOI: 10.7527/S1000-6893.2013.0401
The aero thermal heating rate of hypersonic vehicle surfaces is a key input parameter for thermal protection system design, It is of great significance, in view of the limitation of computation and ground test, to obtain the aerothermal heating rate in the real environment of flight, and then validate and upgrade the computation code and ground test based on this information. Typical flight missions in the world and their in-flight heat transfer measurement plans since the 1950s are enumerated in this study. With the "Design in" and "Add on" as the classification features for heat measuring technology, various instruments and corresponding flight results are described. The impact of "thermal matching" and "structural matching" is analysed as a key factor for the flight heat transfer measurement technology, solution of the problem and engineering experience introduced by flight test examples. A conclusion is made for the general and specific characteristics, and the development trend for heat measurement technology. Finally, suggestions are made based on the above study for future research in this field.
[1] Neumann R D. Temperature and heat flux measurements: challenges for high temperature aerospace application//The 1992 NASA Langley Measurement Technology Conference: Measurement Technology for Aerospace Applications in High-Temperature Environments. Washington, D.C.: NASA, 1992: 1-30.
[2] Wendell H S. X-15 Research result with a selected bibliography, NASA-SP-60. Washington, D.C.: NASA, 1965.
[3] Denison M R, Tellep D M. X-17 Reentry test vehicle R-2 final flight report. Part Ⅱ-analysis of transition and aerodynamic heating on nose cone, LMSD-3003. Virginia: LMSD, 1957.
[4] Anon. Project FIRE integrated post flight evaluation report, flight no. 1, NASA-CR-57017. Washington, D.C.: NASA, 1965.
[5] Lee D B, Goodrich W D. The aerothermodynamic environment of the Apollo command module during superorbital entry, NASA-TN-D-6792. Washington, D.C.: NASA, 1972.
[6] Auweter-Kurtz M, Hald H, Koppenwallner G, et al. German experiments developed for reentry missions[J]. Acta Astronautica, 1996, 38(1): 47-61.
[7] Massobrio F, Viotto R, Serpico M. EXPERT: An atmospheric re-entry test-bed[J]. Acta Astronautica, 2007, 60(12): 974-985.
[8] Praharaj S C, Foster L D. Orbital flight test shuttle external tank flowfield and aerothermal analysis, AIAA-1984-1750. Reston: AIAA, 1984.
[9] Neumann R D, Erbland P J, Kretz L O. Instrumentation of hypersonic structures a review of past application and need of the future, AIAA-1988-2612. Reston: AIAA, 1988.
[10] Jenkins D R. X-15: Extending the frontiers of flight, NASA/SP-2007-562. Washington, D.C.: NASA, 2007.
[11] Robert D Q, Frank V O. Heat transfer measurement obtained on the X-15 airplane including correlation with wind tunnel result, NASA-TM-X-1705. Washington, D.C.: NASA, 1969.
[12] Murphy J D, Rubesin M W. An evaluation of free-flight test data for aerodynamic heating from laminar, turbulent, and transitional boundary layers. Part Ⅱ-the X-17 reentry body, NASA-TA-9527. Washington, D.C.: NASA, 1960.
[13] Balgeman E J, Cassell G. X-17 Re-entry test vehicle R-2 final flight report, NASA-AD-127785. Washington, D.C.: NASA, 1957.
[14] Stainback P C, Johnson C B, Boney L R, et al. A comparison of theoretical predictions and heat-transfer measurements for a flight experiment at Mach 20 (Reentry F), NASA-TM-X-2560. Washington, D.C.: NASA, 1962.
[15] Wright R L, Zoby E V. Flight measurements of boundary-layer transition on a 5 deg half-angle cone at a free-stream Mach number of 20 (Reentry F), NASA-TM-X-2253. Washington, D.C.: NASA, 1962.
[16] Johnson C B, Boney L R. A simple integral method for the calculation of real-gas turbulent boundary layers with variable edge entropy, NASA-TN-D-6217. Washington, D.C.: NASA, 1971.
[17] Scallion W I, Lewis J H. Flight parameters and vehicle performance for project FIRE flight 1 launched april 14, 1964, NASA-TN-D-2996. Washington, D.C.: NASA, 1965.
[18] Anon. Project FIRE integrated post flight evaluation report flight No. Ⅱ, NASA-CR-66000. Washington, D.C.: NASA, 1965.
[19] Cauchon D L. Project FIRE flight 1 radiative heating experiment, NASA-TM-X-1222. Washington, D.C.: NASA, 1969.
[20] Anon. Post launch report for mission as-201 (Apollo Spacecraft 009), NASA-TM-X-72334. Washington, D.C.: NASA, 1966.
[21] Lee D B. Apollo experience report: Aerothermodynamics evaluation, NASA-TN-D-6843. Washington, D.C.: NASA, 1964.
[22] Lee D B, Bertin J J, Goodrich W D. Heat-transfer rate and pressure measurements obtained during Apollo orbital entries, NASA-TN-D-6028. Washington, D.C.: NASA, 1970.
[23] Hearne L F, Chin J H, Woodruff L W. Study of aerothermodynamic phenomena associated with reentry of manned spacecraft, Lockheed Missiles and Space Company Rept. Y-78-66-1. Sunnyvale: Lockheed Missiles and Space Company, 1966.
[24] Toddard L W, Draper H L. Development and testing of development flight instrumentation for the Space Shuttle//Proceedings of International Instrumentation Symposium. Pittsburgh: Instrument Society of America, 1978: 663-672.
[25] Throckmorton D A. Benchmark aerodynamic heat transfer data from the first flight of the Space Shuttle Orbiter, AIAA-1982-0003. Reston: AIAA, 1982.
[26] Bradley P F, Throckmorton D A. Space shuttle orbiter flight heating rate measurement sensitivity to thermal protection system uncertainties, NASA-TM-83138. Washington, D.C.: NASA, 1983
[27] Haney J W. Orbiter entry heating lesson learned from development flight test program, NASA-CP-2283. Washington, D.C.: NASA, 1983.
[28] Kenneth W I, Mary F S. Space Shuttle hypersonic aerodynamic and aerothermodynamic flight research and the comparison to ground test results, NASA-TM-4499. Washington, D.C.: NASA, 1993.
[29] Masao S, Yasutoshi I. Overview of aero- and aerothermodynamic researches on HOPE-X and related activities//34th AIAA Fluid Dynamics Conference and Exhibit. Tokyo: Institute of Space Technology and Aeronautics, Japan Aerospace Exploration Agency, 2004: 28.
[30] Fujii K, Watanabe S, Kurotaki T, et al. Aerodynamic heating measurements on nose and elevon of hypersonic flight experiment vehicle[J]. Journal of Spacecraft and Rockets, 2001, 38(1): 8-14.
[31] Müller E R, Koppenwallner G. RAFLEX An air data system for re-entry vehicles//Fourth Symposium on Aerothermodynamics for Space Vehicles. Capua: European Space Agency, 2002: 457-464.
[32] Turner J, Hoerschgen M, Jung W, et al. SHEFEX hypersonic reentry flight experiment, vehicle and subsystem design, flight performance and prospects, AIAA-2006-8115. Reston: AIAA, 2006.
[33] Barth T. Aero and thermodynamic analysis to SHEFEX I[J]. Engineering Applications of Computational Fluid Mechanics, 2008, 2(1): 76-84.
[34] Eggers T, Longo J, Turner J, et al. The SHEFEX flight experiment pathfinder experiment for a sky based test facility, AIAA-2006-7921. Reston: AIAA, 2006.
[35] Macret J L, Leveugle T. The ARD (Atmospheric Reentry Demonstrator) program-An overview, AIAA-1999-4934. Reston: AIAA, 1999.
[36] Tran P, Paulat J C, Boukhobza P. Re-entry flight experiments lessons learned-the atmospheric reentry demonstrator ARD, NATO RTO-EN-AVT-130. Neuilly-sur-Seine: RTO, 2007.
[37] Alestra S, Colinet J, Dubois J. An inverse method for nonlinear ablative thermics with experimentation of automatic differentiation[J]. Journal of Physics: Conference Series, 2000, 135(1): 1-12.
[38] Gazarik M, Wright M, Little A, et al. Overview of the MEDLI project//2008 IEEE Aerospace Conference. Washington, D.C.: NASA Langley Research Center, 2008: 1-12.
[39] Mahzari M, Braun R D. Time-dependent estimation of Mars Science Laboratory surface heating from simulated MEDLI data, AIAA-2012-2871. Reston: AIAA, 2012.
[40] Mahzari M, Braun R D, White T D. Preliminary analysis of the Mars Science Laboratory's entry aerothermodynamic environment and thermal protection system performance, AIAA-2013-0185. Reston: AIAA, 2013.
[41] Martinez E R, Weber C T, Oishi T, et al. Development of a sheathed miniature aerothermal reentry thermocouple for thermal protection system materials, AIAA-2011-3321. Reston: AIAA, 2011.
[42] Santos J, Beck R, Risch T. Thermal modeling of in-depth thermocouple response in ablative heat shield materials, AIAA-2008-4134. Reston: AIAA, 2008.
[43] White T, Cozmuta I, Santos J, et al. Proposed analysis process for Mars Science Laboratory heat shield sensor plug flight data, AIAA-2011-3957. Reston: AIAA, 2011.
[44] Bose D, White T, Santos J. Initial assessment of Mars Science Laboratory heat shield instrumentation and flight data, AIAA-2013-0908. Reston: AIAA, 2013.
[45] Jr Freeman D C, Reubush D E, McClinton C R. The NASA Hyper-X program, NASA-TM-1997-207243. Washington, D.C.: NASA, 1997.
[46] Berry S, Daryabeigi K, Wurster K, et al. Boundary layer transition on X-43A, AIAA-2008-3736. Reston: AIAA, 2008.
[47] Qian W Q, He K F, Gui Y W, et al. Inverse estimation of surface heat flux for three-dimensional transient heat conduction problem[J]. Acta Aerodynamica Sinica, 2010, 28(2): 155-160. (in Chinese) 钱炜祺, 何开锋, 桂业伟, 等. 非稳态表面热流反演算法研究[J]. 空气动力学学报, 2010, 28(2): 155-160.
[48] Qian W Q, Wu S J, Bu H T, et al. Preliminary investigation of principle experiment for aero-thermodynamic parameter estimation[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2): 59-62. (in Chinese) 钱炜祺, 吴世见, 卜海涛, 等. 气动热参数辨识原理性实验初步研究[J]. 实验流体力学, 2009, 23(2): 59-62.
[49] Wu H T. An indirect measurement technique for the surface temperature and heat flux[J]. Journal of Astronautic Metrology and Measurement, 2003, 23(4): 30-34. (in Chinese) 吴洪潭. 表面温度和热流的一种间接测量技术[J]. 宇航计测技术, 2003, 23(4): 30-34.
[50] Liu C P. Aero-thermodynamic and thermal protection test heat flux measurement[M]. Beijing: National Defense Industry Press, 2013: 13-190. (in Chinese) 刘初平. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013: 13-190.
[51] Cao Y Z, Epstein A H. A double film heat flux gauge and its application[J]. Acta Aeronoutica et Astronautica Sinica, 1985, 6(5): 478-483. (in Chinese) 曹玉璋, A. H. 爱普斯坦. 双膜热流计的研究及其应用[J]. 航空学报, 1985,6(5): 478-483.
[52] Xiao Y W, Xie G J, He F, et al. The research of heat flux film sensor under high temperature environment[J]. Microprocessors, 2012(5): 1-3. (in Chinese) 肖友文, 谢贵久, 何峰, 等. 薄膜高温热流测量技术研究[J]. 微处理机, 2012(5): 1-3.
[53] Yang S J. Research and develop of a miniature transient thin-film heat-flux gauge. Beijing: College of Environmental and Energy Engineering,Beijing University of Technology, 2001.(in Chinese) 杨素君. 微型瞬态薄膜热流计的研制.北京: 北京工业大学环境与能源工程学院, 2001.
[54] Li L, Wang X Z, Feng L L, et al. Study of calibration method of heat flux sensor at high temperature//4th Hypersonic Technology Conference Agenda and Abstracts. Sanya: Hypersonic Research Center CAS, 2011:21. (in Chinese) 李龙, 王新竹, 冯礼理, 等. 热流传感器的高温标定方法的研究//第四届高超声速科技学术会议会议日程及摘要集. 三亚: 中国科学院高超声速科技中心, 2011: 21.
/
〈 | 〉 |