基于膨胀度可控的SERN设计及试验验证
收稿日期: 2013-03-28
修回日期: 2013-08-26
网络出版日期: 2013-08-28
基金资助
国家自然科学基金(90916023)
Design and Experimental Validation of SERN Based on Controllable Expansion Degree Distribution
Received date: 2013-03-28
Revised date: 2013-08-26
Online published: 2013-08-28
Supported by
National Natural Science Foundation of China (90916023)
单边膨胀喷管(SERN)是超燃冲压发动机的关键部件,由于其几何非对称,在发动机点火/熄火瞬间,SERN会产生较大的冷热态俯仰力矩差,影响飞行器的稳定性。现有解决方法主要是利用几何/气动调节方式,但都有不利影响。本文提出了基于膨胀度可控的SERN设计的新方法,将采用该方法得到的喷管模型B与基准喷管模型A进行了对比研究,并对模型B进行缩比冷流试验,试验与数值模拟结果吻合良好。研究结果表明:飞行马赫数为4.5时,模型B的推力系数比模型A仅仅下降了0.1%,而模型B比模型A的冷热态俯仰力矩差减小了80.49%;飞行马赫数为6.5时,模型B的推力系数比模型A不仅上升1.1%,同时模型B比模型A冷热态俯仰力矩差还下降12.73%,验证了设计思想的正确性,为提高SERN俯仰力矩性能提供了一种新的思路。
赵强 , 徐惊雷 , 于洋 . 基于膨胀度可控的SERN设计及试验验证[J]. 航空学报, 2014 , 35(1) : 125 -131 . DOI: 10.7527/S1000-6893.2013.0372
The single expansion ramp nozzle (SERN) is a key component of a scramjet engine. However, because of its asymmetrical geometry large pitch moment differences exist from the SERN at the start and shut-down moment of the scramjet engine, which seriously affects the stability of the aircraft. To overcome the shortcomings of the existing methods of reducing pitch moment differences which use adjustable nozzles, a nozzle Model B based on controllable expansion degree distribution is presented in this paper. Model B compares with baseline Model A. Cold-flow test and numerical simulation are conducted on the sub-scaled Model B, and their results agree well with each other. The results demonstrate that at flight Mach numbers 4.5 and 6.5, the pitch moment of the cold-state and hot-state of Model B decreases by 80.49% and 12.73% respectively, while the thrust coefficient decreases by 0.1% at flight Mach number 4.5 and increases by 1.1% at flight number 6.5. The pitch moment performance of the SERN is improved significantly, which effectively reduces the difficulty of the aircraft trim. The validity of the design thinking and method is fully verified, which provides a new approach for improving the pitch moment performance of the SERN.
[1] Mitani T, Ueda S, Tani K, et al. Validation studies of scramjet nozzle performance[J]. Journal of Propulsion and Power, 1993, 9(5): 725-730.
[2] Baucco A R, Shanley K T, Bevies D. CFD validation study for internal performance of advanced SERN configurations, AIAA-2012-4223[R]. 2012.
[3] Edwards C L Q, Small W J, Weidner J P, et al. Studies of scramjet/airframe integration techniques for hypersonic aircraft, AIAA-1975-58[R]. 1975.
[4] Xu J L, Zhang Y H, Zhang K Y. Numerical simulation of single expansion ramp nozzle for scramjet on the off-design point[J]. Journal of Propulsion Technology, 2007, 28(3): 287-290.(in Chinese) 徐惊雷, 张艳慧, 张堃元. 超燃冲压发动机非对称喷管非设计状态性能计算[J]. 推进技术, 2007, 28(3): 287-290.
[5] Damira S K, Marathe A G, Sudhakar K, et al. Parametric optimization of single expansion ramp nozzle(SERN), AIAA-2006-5188[R]. 2006.
[6] Ge J H, Xu J L, Wang M T, et al. The prediction of flow separation in SERN[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1394-1399.(in Chinese) 葛建辉, 徐惊雷, 王明涛, 等. 非对称喷管流动分离的预测[J]. 航空学报, 2012, 33(8): 1394-1399.
[7] Bradford J E. Rapid prediction of afterbody nozzle performance in scream, AIAA-2002-3605[R]. 2002.
[8] Starkey R P. Off-design performance characterization of a variable geometry scramjet, AIAA-2005-3711[R]. 2005.
[9] Mirmirani M, Wu C, Clark A, et al. Modeling for control of a generic airbreathing hypersonic vehicle, AIAA-2005-6256[R]. 2005.
[10] Lederer R. Testing the actively cooled fully variable hypersonic demonstrator nozzle, AIAA-1996-4550[R]. 1996.
[11] Lederer R, Kruger W. Nozzle development as a key element for hypersonics, AIAA-1993-5058[R]. 1993.
[12] Zhang K Y, Zhang R X, Xu H. Investigation of single expansion ramp nozzle[J]. Journal of Propulsion Technology, 2001, 22(5): 380-382.(in Chinese) 张堃元, 张荣学, 徐辉. 非对称大膨胀比喷管研究[J]. 推进技术, 2001, 22(5): 380-382.
[13] Haid D, Gamble E J. Nozzle aftbody drag reduction using fluidics, AIAA-2004-3921[R]. 2004.
[14] Gamble E, Haid D. Improving off-design nozzle performance using fluidic injection, AIAA-2004-1206[R]. 2004.
[15] Gamble E J, DeFrancesco R, Haid D, et al. Fluid nozzle to improve transonic pitch and thrust performance of hypersonic vehicle, AIAA-2005-3501[R]. 2005.
[16] Rao G V R. Exhaust nozzle contour for optimum thrust[J]. Journal of Jet Propulsion, 1958, 38(6): 377-382.
[17] Shyne R J, Keith T G. Analysis and design of optimized truncated scarfed nozzles subject to external flow effect, AIAA-1990-2222[R]. 1990.
/
〈 | 〉 |