流体力学与飞行力学

考虑地面影响的半空间气动噪声数值计算方法

  • 庞川博 ,
  • 王芳 ,
  • 蔡晋生 ,
  • 刘秋洪
展开
  • 西北工业大学 航空学院, 陕西 西安 710072
庞川博 男,硕士研究生。主要研究方向:气动噪声算法研究及数值预测。E-mail:Pangcb51424@live.com;王芳 女,博士研究生。主要研究方向:气动噪声算法研究及数值预测。E-mail:fangw1211@163.com;蔡晋生 男,博士,教授,博士生导师。主要研究方向:计算流体力学以及飞行器气动布局设计。Tel:029-88495381 E-mail:caijsh@nwpu.edu.cn;刘秋洪 男,博士,副教授,硕士生导师。主要研究方向:气动声学理论与计算方法研究。E-mail:liuqh@nwpu.edu.cn

收稿日期: 2013-05-02

  修回日期: 2013-07-31

  网络出版日期: 2013-08-21

基金资助

国家自然科学基金(11002116);西北工业大学基础研究基金(GCKY1006)

A Numerical Method of Predicting the Aerodynamic Noise in a Half-space with Ground Effects

  • PANG Chuanbo ,
  • WANG Fang ,
  • CAI Jinsheng ,
  • LIU Qiuhong
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-05-02

  Revised date: 2013-07-31

  Online published: 2013-08-21

Supported by

National Natural Science Foundation of China (11002116); Basic Research Foundation of Northwestern Polytechnical University (GCKY1006)

摘要

含非紧致边界的半空间气动噪声问题普遍存在于航空领域,在数值计算过程中不仅要考虑非紧致边界的散射效应,还需要考虑地面对声波的反射。基于Lighthill声模拟理论和广义格林函数方法,引入边界声压积分项和可压缩修正项可以考虑非紧致边界以及流体可压缩性对声波散射的影响。然而在半空间声场的计算过程中,包含沿无限大地面的积分项,为了克服沿地面积分所带来的巨大工作量,根据无穷大平板对声波的反射特性,推导得出频域下基于半空间格林函数的声学积分方程。同时开展了半空间中应力源噪声与圆柱绕流噪声的数值预测与分析,验证了该方法的准确性与高效性。

本文引用格式

庞川博 , 王芳 , 蔡晋生 , 刘秋洪 . 考虑地面影响的半空间气动噪声数值计算方法[J]. 航空学报, 2014 , 35(3) : 666 -673 . DOI: 10.7527/S1000-6893.2013.0354

Abstract

Aerodynamic noise in a half-space with non-compact boundaries widely exists in the area of aviation.When calculating noise problems numerically, the effects of the ground and other non-compact boundaries must be considered. Based on the Lighthill analogy and the generalized Green function method, the non-compact boundary effects and the fluid compressibility can be taken into consideration by bringing in the boundary sound pressure integral term and the compressible correction term. However, the integral along the infinite ground must be calculated when solving a half-space noise problem. In order to reduce the high computational expense, a new method using the half-space Green function is derived in the frequency domain based on the properties of sound reflection on a large flat. Meanwhile, through the numerical simulation of the stress noise and the flow-induced noise around a cylinder in a half-space, the accuracy and efficiency of the new method is validated.

参考文献

[1] Tam C K W, Webb J C, Dong Z. A study of the short wave components in computational acoustics[J]. Journal of Computational Acoustics, 1993, 1(1): 1-30.

[2] Tam C K W, Webb J C. Dispersion-relation-preserving finite difference schemes for computational acoustics[J]. Journal of Computational Physics, 1993, 107(2): 262-281.

[3] Hu F Q, Hussaini M Y, Manthey J L. Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics[J]. Journal of Computational Physics, 1996, 124(1): 177-191.

[4] Tam C K W, Dong Z. Wall boundary conditions for high-order finite-difference schemes in computational acoustics[J]. Theoretical and Computational Fluid Dynamics, 1994, 6(5-6): 303-322.

[5] Long S L, Nie H, Xue C J, et al. Simulation and experiment on aeroacoustic noise characteristics of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1002-1013. (in Chinese) 龙双丽, 聂宏, 薛彩军, 等. 飞机起落架气动噪声特性仿真与试验[J]. 航空学报, 2012, 33(6): 1002-1013.

[6] Schram C. A boundary element extension of Curle’s analogy for non-compact geometries at low-Mach numbers[J]. Journal of Sound and Vibration, 2009, 322(1): 264-281.

[7] Khalighi Y, Mani A, Ham F, et al. Prediction of soundgenerated by complex flows at low Mach numbers[J]. AIAA Journal, 2010, 48(2): 306-316.

[8] Mao Y J. Development of acoustic analogy for low Mach numbers flow and its applications[D]. Xi’an: School of Energy and Power Engineering, Xi’an Jiaotong University, 2010. (in Chinese) 毛义军. 低马赫数流动中声比拟理论的拓展及其应用研究[D]. 西安: 西安交通大学能源与动力学院, 2010.

[9] Powell A. Aerodynamic noise and the plane boundary[J]. The Journal of the Acoustical Society of America, 2005, 32(8): 982-990.

[10] Shariff K, Wang M. A numerical experiment to determine whether surface shear-stress fluctuations are a true sound source[J]. Physics of Fluids, 2005, 17(10): 107105.

[11] Hu Z, Morfey C L, Sandham N D. Sound radiation from a turbulent boundary layer[J]. Physics of Fluids, 2006, 18(9): 098101.

[12] Nakashima Y, Inoue O. Sound generation by a vortex ring collision with a wall[J]. Physics of Fluids, 2008, 20(12): 126104.

[13] Li X D, Sun X F, Hu Z A, et al. A time domain method for propeller noise prediction including aircraft fuselage effect[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(11): A585-A591. (in Chinese) 李晓东, 孙晓峰, 胡宗安, 等. 考虑飞机舱壁影响的螺旋桨声场时域预测法[J]. 航空学报, 1993, 14(11): A585-A591.

[14] Lighthill M J. On sound generated aerodynamically: I. General theory[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1952, 211(1107): 564-587.

[15] Williams J E F, Hawkings D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321-342.

[16] Wang F, Liu Q H, Cai J S. An unified computational aeroacoustic integral method of noise radiation and scattering with noncompact bodies[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2482-2491. (in Chinese) 王芳, 刘秋洪, 蔡晋生. 非紧致结构气动噪声辐射散射统一积分计算方法[J]. 航空学报, 2013, 34(11): 2482-2491.

[17] Silva L E, Silveira-Neto A, Damasceno J J R. Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method[J]. Journal of Computational Physics, 2003, 189(2): 351-370.

[18] Inoue O, Hatakeyama N. Sound generation by a two-dimensional circular cylinder in a uniform flow[J]. Journal of Fluid Mechanics, 2002, 471(1): 285-314.

文章导航

/