热防护材料表面催化特性研究进展
收稿日期: 2013-05-21
修回日期: 2013-07-11
网络出版日期: 2013-07-29
基金资助
国家自然科学基金集成项目(91016029,91216302)
Research Advances on Surface Catalytic Properties of Thermal Protection Materials
Received date: 2013-05-21
Revised date: 2013-07-11
Online published: 2013-07-29
Supported by
Integrated Project of National Natural Science Foundation of China (91016029,91216302)
随着高超声速飞行器的发展,高焓离解环境下热防护材料所承受的气动热载荷在很大程度上受到材料表面催化特性的影响。根据高焓服役环境特征和热防护材料表面催化特性的发展现状,重点综述了材料表面催化反应机理和不同尺度的催化模型,分析、比较了催化特性地面测试与评价方法以及典型热防护材料表面催化特性的影响因素,简要总结了国内现阶段相关催化特性研究的初步成果,并在此基础之上提出了催化特性测试与表征方法的不足和后续研究的重点方向,为有效改进热防护材料表面催化特性试验测试技术、准确预测高超声速飞行器气动热环境,从而实现热防护系统的精细化设计提供指导。
孟松鹤 , 金华 , 王国林 , 杨强 , 陈红波 . 热防护材料表面催化特性研究进展[J]. 航空学报, 2014 , 35(2) : 287 -302 . DOI: 10.7527/S1000-6893.2013.0340
With the development of hypersonic vehicles, aerodynamic heat loads on thermal protection materials under high enthalpy disassociated environment is affected by surface catalytic properties to a large extent. According to the research development in characterization of high enthalpy environment and surface catalytic properties, this paper presents an overview of surface catalytic mechanism and catalytic model of different scales, analyzing and discussing ground based surface catalytic tests and evaluation methods and the influence factors of surface catalytic properties for the typical thermal protection materials. A brief summary of the preliminary results of catalytic properties at this stage is made. Based on this, we analyze the insufficiencies in the current test and characterization methods of surface catalytic properties and propose the corresponding future research area, giving instructions on the improvement of surface catalytic properties experimental test methods, which will lead to a precise prediction of aerodynamic heat environment and finally a more accurate thermal protection system design.
[1] Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11. (in Chinese) 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.
[2] Wu Z Q, Cheng H, Zhang W, et al. Effects of thermal environment on dynamic properties of aerospace vehicle panel structures[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 334-342. (in Chinese) 吴振强, 程昊, 张伟, 等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2): 334-342.
[3] Cory S, Paolo V, Thomas E. Uncertainty analysis of reaction rates in a finite-rate surface catalysis model[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(3): 407-416.
[4] John D A. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 2000:1988-1989.
[5] Rosario B, Aniello R, Domenico T, et al. Thermo-structural behaviour of an UHTC made nose cap of a reentry vehicle[J]. Acta Astronautica, 2009, 65(3): 442-456.
[6] Sun J, Liu W Q. Analysis of sharp leading-edge thermal protection of high thermal conductivity materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1622-1628. (in Chinese) 孙健, 刘伟强. 尖化前缘高导热材料防热分析[J]. 航空学报, 2011, 32(9): 1622-1628.
[7] Rong Y S, Liu W Q. Influence of opposing jet on flow field and aerodynamic heating at nose of a reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1552-1557. (in Chinese) 戎宜生, 刘伟强. 再入飞行器鼻锥逆向喷流对流场及气动热的影响[J]. 航空学报, 2010, 31(8): 1552-1557.
[8] Zhang B, Han J L. Multi-field coupled computing platform and thermal transfer of hypersonic thermal protection structures[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 400-409. (in Chinese) 张兵, 韩景龙. 多场耦合计算平台与高超声速热防护结构传热问题研究[J]. 航空学报, 2011, 32(3): 400-409.
[9] Matthew M, Eric M, Ronald Parker, et al. Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2): 470-474.
[10] Kurotaki T. Construction of catalytic model on SiO2-based surface and application to real trajectory, AIAA-2000-2366[R]. Reston: AIAA, 2000.
[11] Voinov L, Zalogin G N, Lunev V V, et al. Comparative analysis of laboratory and full-scale data on the catalycity of the heat shield for the Bor and Buran orbital vehicles[J]. Cosmonautics and Rocket Production, 1994(2): 51-57. (in Russian)
[12] Kovalev V L, Kolesnikov A F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry[J]. Fluid Dynamics, 2005, 40(5): 669-693.
[13] Willey R J. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(1): 55-62.
[14] Kovalev V L, Suslov O N. Simulation of the interaction between partially-ionized air and the catalytic surface of high-temperature reusable thermal insulation[J]. Fluid Dynamics, 1996, 31(5): 775-784.
[15] Herdrich G, Auweter K M, Fertig M, et al. Oxidation behaviour of SiC-based thermal protection aystem materials using newly developed probe techniques[J]. Journal of Spacecraft and Rockets, 2005, 42(5): 817-824.
[16] Cacciatore M, Rutigliano M. Molecular dynamics simulations of surface processes: oxygen recombination on silica surfaces at high temperature, NATO RTO-EN-AVT-142-05[R]. Belgium: von Karman Institute, 2007.
[17] Groß A. Theoretical surface science-A microscopic perspective[M]. Berlin: Springer, 2009: 108-110.
[18] Groß A. Dynamics of molecule-surface interactions from first principles[J]. The Chemical Physics of Solid Surfaces, 2003, 11(1): 1-26.
[19] Groß A. Simulation of gas-surface dynamical interactions, NATO RTO-EN-AVT-142-04[R]. Belgium: von Karman Institute, 2007.
[20] Kovalev V L, Kolesnikov A F, Krupnov A A, et al. Analysis of phenomenological models describing the catalytic properties of high temperature reusable coatings[J]. Fluid Dynamics, 1996, 5(26): 598-604.
[21] Kim Y C, Boudart M. Recombination of O, N and H atoms on silica: Kinetics and mechanism[J]. Langmuir, 1991, 7(12): 2999-3005.
[22] Deutschmann O, Riedel U, Warnatz J. Modeling of nitrogen and oxygen recombination on partial catalytic surfaces[J]. Journal of Heat Transfer, 1995, 117(5): 495-501.
[23] Bruno C. Modelling catalytic recombination heating at hypersonic speeds, AIAA-1989-0309[R]. Reston: AIAA, 1989.
[24] Barbato M, Reggiani S, Muylaert J. Model for heterogeneous catalysis on metal surfaces with applications to hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(3): 412-420.
[25] Grumet A A, Anderson J D. The effects of surface catalysis on the hypersonic shock wave/boundary layer interaction, AIAA-1994-2073[R]. Reston: AIAA, 1994.
[26] Vasco G. Analytical model of heterogeneous atomic recombination on silica like surfaces[J]. IEEE Transactions on Plasma Science, 2007, 35(5): 1397-1412.
[27] Fertig M, Herdrich G. SiO2 catalysis modeling for CFD calculations, AIAA-2007-4257[R]. Reston: AIAA, 2007.
[28] Fertig M, Herdrich G. The advanced URANUS Navier-Stokes code for the simulation of nonequilibrium re-entry flows[J]. Transactions of Japan Society for Aeronautical and Space Sciences, 2009, 7(26): 15-24.
[29] Laux M. Direkte simulation verdünnter, reagierender Strömungen[D]. Germany: Institut für Raumfahrtsysteme, Universität Stuttgart, 1996.(in Chinese)
[30] Seward W A. A model for oxygen atom recombination on a silicon dioxide surface[D]. OH, USA: Air Force Institute of Technology, Wright-Patterson Air Force Base, 1985.
[31] Thömel J, Panesi M, Lukkien J J, et al. A multiscale approach for building a mechanism based catalysis model for high enthalpy CO2 flow, AIAA-2007-4399[R]. Reston: AIAA, 2007.
[32] Rutigliano M, Pieretti A, Cacciatore M, et al. N atoms recombination on a silica surface: a global theoretical approach[J]. Surface Science, 2006, 600(18): 4239-4246.
[33] Sayòs R, Moròn V, Arasa C, et al. Theoretical dynamics of several atomic and molecular oxygen processes over a gilica gurface[C]//6th European Symposium on Aerothermodynamics for Space Vehicles. Versailles, France, 2008.
[34] Thöme J, Chazot O, Barbante P. Aspects of advanced catalysis modeling for hypersonic flows[C]//Proceedings of the Summer Program 2008. America: Center for Turbulence Research, Stanford University, 2008: 29-40.
[35] Chul P. Numerical implementation of surface catalysis, reactions, and sublimation, NATO RTO-EN-AVT-142-16[R]. Belgium: von Karman Institute, 2007.
[36] Kovalev V L. Heterogeneous catalytic processes in aerothermodynamics[R]. Moscow: Physmatlit Publ, 2002. (in Russian)
[37] Masaliito M, Yoshiki M, Toshinari Y, et al. Evaluation of reaction rate constants for thermal Protection materials in dissociated air flow, AIAA-1999-3630[R]. Reston: AIAA, 1999.
[38] Scott C D. Catalytic recombination of nitrogen and oxygen on high-temperature reusable surface insulation, AIAA-1980-1477[R]. Reston: AIAA, 1980.
[39] Scott C D. Catalytic recombination of nitrogen and oxygen on iron-cobalt-chromia spinel, AIAA-1983-0585[R]. Reston: AIAA, 1983.
[40] Stewart D A, Chen Y K, Douglas J B, et al. Predicting material surface catalytic efficiency using arc-jet tests, AIAA-1995-2013[R]. Reston: AIAA, 1995.
[41] Chen Y K, Henlinet W D, Stewart D A, et al. Navier-Stokes solutions with surface catalysis for Martian atmospheric entry[J]. Journal of Spacecraft and Sockets, 1993, 30(1): 32-42.
[42] Stewart D A, Bouslo S. Surface characterization of candidate metallic TPS for RLV, AIAA-1999-3458[R]. Reston: AIAA, 1999.
[43] Stewart D A. Determination of surface catalytic efficiency for thermal protection materials-Room temperature to their upper use limit, AIAA-1996-1869[R]. Reston: AIAA, 1996.
[44] Stewart D A, Rakich J V, Lanfranco M J. Catalytic surface effects on space shuttle thermal protection system during earth entry of flights STS-2 through STS-5, NASA CP-2283, pt.2[R]. Reston: AIAA, 1983.
[45] Stewart D A, Kolodziej P, Leiser D B. Effect of variable surface catalysis on heating near the stagnation point of a blunt body, AIAA-1985-0248[R]. Reston: AIAA, 1985.
[46] Valerio C, Raffaele S, Antonio E, et al. Experimental and numerical simulation, by an arc-jet facility, of hypersonic flow in Titan’s atmosphere[J]. Experimental Thermal and Fluid Science, 2013, 48: 97-101.
[47] Ito T, Kurotaki T, Matsuzaki T, et al. Evaluation of surface catalytic effect on TPS in arc-heated wind tunnel, AIAA-2002-3335[R]. Reston: AIAA, 2002.
[48] Kolesnikov A F, Yakushin M I, Vasil’evskii S A, et al. Catalysis heat effects on quartz surfaces in high-enthalpy subsonic oxygen and carbon dioxide flows[C]//In: Harris R A Ed. Proceedings of 3rd European Symposium on Aerothermodynamics for Space Vehicles. Noordwijk, Netherlands:ESTEC, ESA SP-426, 1999: 537-544.
[49] Kolesnikov A F, Yakushin M I, Vasil'evskii S A, et al. Comparative study of surface catalycity under subsonic air test conditions[C]//4th European Symposium on Aerothermodynamics for Space Applications, 2001: 481-488.
[50] Vasil'evskii S A, Kolesnikov A F, Yakushin M I. Determination of the effective probabilities of the heterogeneous recombination of atoms in the case where gas-phase reactions affect the heat flux[J]. Teplofizika Vysokih Temperatur, 1991, 29(3): 521-529 (in Russian).
[51] Kolesnikov A F, Yakushin M I, Pershir I, et al. Heat transfer simulation and surface catalycity Prediction at the martian atmosphere entry conditions, AIAA-1999-4892[R]. Reston: AIAA, 1999.
[52] Zalogin G N, Lune V V. Catalytic properties of materials in a nonequilibrium dissociated air flow[J]. Fluid Dynamics, 1997, 32(5): 748-755.
[53] Vlasov A V, Zalogin G N, Zemlyanskii B A, et al. Methods and results of experimental determination of the catalytic activity of materials at high temperature[J]. Fluid Dynamics, 2003, 38(5): 815-825.
[54] Chazot O, Paneraiy F, Muylaert J M, et al. Catalysis phenomena determination in plasmatron facility for flight experiment design, AIAA-2010-1248[R]. Reston: AIAA, 2010.
[55] Chazot O, Krassilchik H W, Thöme J. TPS ground testing in plasma wind tunnel for catalytic properties determination, AIAA-2008-1252[R]. Reston: AIAA, 2008.
[56] Herdrich G, Kurtz M A, Fertig M, et al. Catalytic and oxidative behaviour of silicon carbide based materials for thermal protection materials[C]//55th International Astronautical Congress. Vancouver, Canada, 2004: 1-11.
[57] Pidan S, Kurtz M A, Fertig M, et al. Catalytic behaviour of candiatate thermal protection materials[C]//5th European Symposium on Aerothermodynamics for Space Vehicles. Danesy D, Cologne, Germany, 2004: 95-102.
[58] Ueda S, Sato K, Komuro T, et al. Numerical analysis of experimental results on the surface catalycity in HIEST, AIAA-2005-3281[R]. Reston: AIAA, 2005.
[59] Balat M. Interaction of reactive gas flows and ceramics at high temperature-experimental methods for the measurement of species recombination during planetary entry, NATO RTO-EN-AVT-142-12[R]. Belgium: von Karman Institute, 2007.
[60] Davide A, Luigi S, Frederic M, et al. Microstructural characterization of ZrB2-SiC based UHTC tested in the MESOX plasma facility[J]. Journal of the European Ceramic Society, 2010, 30(11): 2345-2355.
[61] Balat M, Eric B. Atomic oxygen recombination on the ODS PM 1000 at high temperature under air plasma[J]. Applied Surface Science, 2010, 256(16): 4906-4914.
[62] Vesel A, Mozetic M, Drenik, A, et al. Dissociation of CO2 molecules in microwave plasma[J]. Chemical Physics, 2011, 382(1-3): 127-131.
[63] Balat M, Passarelli M, Vesel A. Recombination of atomic oxygen on sintered zirconia at high temperature in non-equilibrium air plasma[J]. Materials Chemistry and Physics, 2010, 123(1): 40-46.
[64] Scatteia L, Borrelli. R, Cosentino G, et al. Catalytic and radiative behaviors of ZrB2-SiC ultrahigh Temperature ceramic composites[J]. Journal of Spacecraft and Rockets, 2006, 43(5): 1004-1012.
[65] Osawa H. Experimental and numerical investigation of catalytic efficiency of atomic oxygen recombination on TPS surfaces, AIAA-2009-3934[R]. Reston: AIAA, 2009.
[66] Ito T, Kurotaki T, Sumi T. Evaluation of surface catalytic effect on TPS in 110 kW ICP-heated wind tunnel, AIAA-2005-0189[R]. Reston: AIAA, 2005.
[67] Osawa H. Sawada K. Characteristics of O2-Ar inductively coupled plasma test flow during catalytic recombination processes[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(1): 30-41.
[68] Suzuki T, Mizuno M, Fujita K. Experimental and numerical study of thermal response of ablator in an arc-jet facility, AIAA-2007-0415[R]. Reston: AIAA, 2007.
[69] Smith W V. The surface recombination of H atoms and OH radicals[J]. Journal of Chemical Physics, 1946, 11(3): 110-125.
[70] Pejakovic D A, Marschall J, Duan L, et al. Nitric oxide production from surface recombination of oxygen and nitrogen atoms[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(2):178-186.
[71] Marschall J. Laboratory Determination of Thermal Protection System Materials Surface Catalytic Properties, NATO RTO-EN-AVT-142-11[R]. Belgium: von Karman Institute, 2007.
[72] Pejakovic D A, Marschall J, Duan L, et al. Direct detection of NO produced by high-temperature surface catalyzed atom recombination[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(3): 603-611.
[73] Marschall J, Fletcher D. High enthalpy test environments, flow modeling and in situ diagnostics for characterizing ultra-high temperature ceramics[J]. Journal of the European Ceramic Society, 2010, 30(1): 2323-2336.
[74] May J W, Linnett J W. Recombinations of atoms at surfaces-an effusion method applied to oxygen atom recombination[J]. Journal of Catalysis, 1967, 7(4): 324-341.
[75] Wickramanayaka S, Meikle S, Kobayashi T, et al. Measurements of catalytic efficiency of surfaces for the removal of atomic Oxygen using NO2 continuum[J]. Journal of Vacuum Science and Technology, 1991, 9(6): 2999-3002.
[76] Maclean M, Holden M. Assessment of aerothermal heating augmentation attributed to surface catalysis in high enthalpy shock tunnel flows[C]//6th European Symposium on Aerothermodynamics for Space Vehicles. ESA SP-659, 2009: 1-8,
[77] Ueda S, Sato K, Komuro T, et al. Study on surface catalytic effect using high enthalpy shock tunnel, AIAA-2001-1768[R]. Reston: AIAA, 2001.
[78] Park G. Oxygen catalytic recombination on copper oxide in tertiary gas mixtures[J]. Journal of Spacecraft and Rockets, 2013, 50(3): 540-555.
[79] Lin L, Wu B, Wu C K. Studies on surface catalytic effect of materials in a high-temperature gas flow[J]. Acta Aerodynamica Sinica, 2001, 19(4): 407-413. (in Chinese) 林烈, 吴彬, 吴承康. 高温气流中材料表面催化特性研究[J]. 空气动力学报, 2001, 19(4): 407-413.
[80] Wang G L, Qu Y, Chen D J. Impact of hypersonic aerocraft thermal protection system material surface catalyticity property on aerodynamic heating[C]//1st Modern Aerodynamics and Aerothermodynamics Meeting of China, 2006: 346-350. (in Chinese) 王国林, 曲杨, 陈德江, 等. 高超声速飞行器热防护系统防热材料表面催化特性对气动加热影响的研究[C]//中国第一届近代空气动力学与气动热力学会议, 2006: 346-350.
[81] Chen D J, Liu W Q, Wang G L, et al. Study on thermal protection material surface catalyticity property testing technique[C]//13th Hypersonic Aerodynamics/Aerothermodynamics Academic Communication, 2006: 206-210. (in Chinese) 陈德江, 刘伟强, 王国林, 等. 防热材料表面催化特性试验技术研究[C]//全国第十三届高超声速气动力(热)学术交流会议论文集, 2006: 206-210.
[82] Chen H B. Catalyticity and oxidation properties of ZrB2 based ultrahigh temperature ceramics[D]. Harbin: School of Aeronautics, Harbin Institute Technology, 2011. (in Chinese) 陈红波. ZrB2基超高温陶瓷材料催化/氧化性能研究[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2011.
[83] Scatteia1 L, Alfano D, Monteverde F, et al. Effect of the machining method on the catalycity and emissivity of ZrB2 and ZrB2-HfB2-based ceramics[J]. Journal of American Ceramic Society, 2008, 91(5): 1461-1468.
[84] Scatteia L, Alfano D, Balat M, et al. Characterization of emissivity and surface catalycity of ultra high temperature ceramics and C/SiC composites for space applications[C]//58th International Astronautical Congress, Hyderabad(Inde), 2007: C2.3.05, 1-7.
[85] Marschall J, Pejakovic D A, Fahrenholtz W G, et al. Temperature jump phenomenon during plasmatron testing of ZrB2-SiC ultrahigh temperature ceramics[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(4): 559-572.
[86] Li N, Hu P, Zhang X H, et al. Effects of oxygen partial pressure and atomic oxygen on the microstructure of oxide scale of ZrB2-SiC composites at 1500 ℃[J]. Corrosion Science, 2013, 73(8): 44-53.
/
〈 | 〉 |