采用γ-Reθt模型的转捩流动计算分析
收稿日期: 2013-05-22
修回日期: 2013-06-27
网络出版日期: 2013-07-10
基金资助
西北工业大学基础研究基金(NPU-FFR-JC201212)
Transitional Flow Simulation Based on γ-Reθt Transition Model
Received date: 2013-05-22
Revised date: 2013-06-27
Online published: 2013-07-10
Supported by
NPU Foundation of Fundamental Research (NPU-FFR-JC201212)
为了在黏性流动数值模拟中实现边界层转捩的自动预测,将γ-Reθt转捩模型引入到三维非结构混合网格的雷诺平均Navier-Stokes方程求解程序(HUNS3D)。该转捩模型由两个依赖当地变量定义的关于间歇因子和当地化转捩起始动量厚度雷诺数的输运方程组成,其数值求解算法与流场求解程序中湍流模型的求解方法相同。为了考察和验证HUNS3D程序中γ-Reθt转捩模型对航空工程中的常见附面层自由转捩问题的预测精度,对低速平板流动、Aerospatial-A翼型、NLR 7301超临界翼型和NASA Trap wing 高升力构型等典型外形的自由转捩流动进行了计算,并将计算结果与相关试验结果进行了对比分析。算例结果表明:γ-Reθt转捩模型对于转捩位置具有很好的敏感性,能比较准确地预测自然转捩和分离转捩,可以有效提高HUNS3D程序对实际流动的模拟能力和预测精度。
王刚 , 王光秋 , 王光秋 , 单肖文 . 采用γ-Reθt模型的转捩流动计算分析[J]. 航空学报, 2014 , 35(1) : 70 -79 . DOI: 10.7527/S1000-6893.2013.0329
In order to predict the boundary layer transition automatically in viscous flow simulation, γ-Reθt transition model is implemented in a hybrid unstructured Reynolds averaged Navier-Stokes flow solver which was originally developed by the authors and named as HUNS3D. The transition model is built on two locally defined transport equations. The first equation is for intermittency and the second for the transition onset criterion based on momentum-thickness Reynolds number. The numerical algorithms for solving the transition model equations are the same as those for solving turbulence model equations. To validate and assess the ability and the accuracy of the HUNS3D's γ-Reθt transition model in predicting the boundary layer transition in typical aeronautical engineering cases, a series of free transitional flows around typical configurations, including flat plate, Aerospatial-A airfoil, NLR 7301 supercritical airfoil and NASA Trap wing high lift configuration, are simulated and the computed results are compared with corresponding experimental data, which demonstrate that the γ-Reθt transition model is very sensitive to the transition onset location and it predicts the natural transition and separation-induced transition accurately. With this transition model, the performance of the HUNS3D code in simulating the engineeringly realistic flow can be greatly enhanced.
Key words: transition; boundary layer; intermittency; turbulence model; turbulence intensity
[1] White F M. Viscous fluid flow[M]. 3th ed. New York: McGraw-Hill, 2006: 370-371.
[2] Reed H L, Saric W S. Transition mechanisms for transport aircraft, AIAA-2008-3743[R]. Reston: AIAA, 2008.
[3] Muppidi S, Mahesh K. DNS of transition in supersonic boundary layers, AIAA-2011-3564[R]. Reston: AIAA, 2011.
[4] Pan H L, Ma H D, Shen Q. LES application to unsteady flat plate shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 242-248. (in Chinese) 潘宏禄, 马汉东, 沈清. 基于LES方法的平板非定常激波/湍流边界层干扰研究[J]. 航空学报, 2011, 32(2): 242-248.
[5] Stock H W, Haase W. Navier-Stokes airfoil computations with eN transition prediction including transitional flow regions[J]. AIAA Journal, 2000, 38(11): 2059-2066.
[6] Fu S, Wang L. Progress in turbulence/transition modeling[J]. Advances in Mechanics, 2007, 37(3): 409-416. (in Chinese) 符松, 王亮. 湍流转捩模式研究进展[J]. 力学进展, 2007, 37(3): 409-416.
[7] Meng D H, Zhang Y L, Wang G X, et al. Application of γ-Reθ transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 792-801.(in Chinese) 孟德虹, 张玉伦, 王光学, 等. γ-Reθ转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801.
[8] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906.
[9] Wang G, Ye Z Y. Generation of three dimensional mixed and unstructured grids and its application in solving Navier-Stokes equations[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(5): 385-390. (in Chinese) 王刚, 叶正寅. 三维非结构混合网格生成与NS方程求解[J]. 航空学报, 2003, 24(5): 385-390.
[10] Burt M. A selection of experimental test cases for the validation of CFD codes: chapter 5-summaries of the test cases[R]. AGARD AR-303, 1994.
[11] Rumsey C L, Slotnick J P, Long M, et al. Summary of the first AIAA CFD high-lift prediction workshop[J]. Journal of Aircraft, 2011, 48(6): 2068-2079.
[12] Mian H H, Wang G, Raza M A. Application and validation of HUNS3D flow solver for aerodynamic drag prediction cases[C]//10th International Bhurban Conference on Applied Sciences and Technologies (IBCAST), 2013: 209-217.
[13] Wang G, Jiang Y W, Ye Z Y. An improved LU-SGS implicit scheme for high reynolds number flow computations on hybrid unstructured mesh[J]. Chinese Journal of Aeronautics, 2012, 25(1): 33-41.
[14] Menter F R. Review of the shear-stress transport turbulence model experience from an industrial perspective[J]. International Journal of Computational Fluid Dynamics, 2009, 23(4): 305-316.
[15] Schubauer G B, Klebanoff P S. Contribution on the mechanics of boundary layer transition[R]. NACA-TN-3489, 1955.
[16] Langtry R B, Menter F R. Transition modeling for general CFD applications in aeronautics, AIAA-2005-0552[R]. Reston: AIAA, 2005.
[17] NLR Amsterdam. NLR 7301 airfoil, in experimental data base for computer program assessment[R]. AGARD AR-138, 1979.
[18] 1st AIAA CFD high lift prediction workshop (HiLiftPW-1)[C/OL]. June 26-27 2010, Chicago, IL, USA. http:[C]//hiliftpw.larc.nasa.gov/index-workshop1.html.
/
〈 | 〉 |