材料工程与机械制造

机器人加工系统刚度性能优化研究

  • 曲巍崴 ,
  • 侯鹏辉 ,
  • 杨根军 ,
  • 黄官平 ,
  • 尹富成 ,
  • 石鑫
展开
  • 1. 浙江大学 机械工程学系, 浙江 杭州 310027;
    2. 中航工业陕西飞机工业(集团)有限公司, 陕西 汉中 723000
曲巍崴女,博士,讲师。主要研究方向:机器人辅助装配,薄壁结构变形机理,CAD/CAM,反求工程。Tel:0571-87953929E-mail:qwwwwl@zju.edu.cn;侯鹏辉男,硕士研究生。主要研究方向:工业机器人技术。E-mail:zjuhouph@163.com;杨根军男,学士,陕飞工程技术部部长。主要研究方向:飞机制造技术。Tel:0916-2886372E-mail:yanggj@shanfei.com;黄官平男,硕士研究生。主要研究方向:飞机装配技术。Tel:0916-2888955E-mail:huanggp@shanfei.com;尹富成男,硕士研究生。主要研究方向:飞机工艺装备设计制造技术。Tel:0916-2886334E-mail:yinfc@shanfei.com;石鑫男,硕士研究生。主要研究方向:航空材料加工技术。E-mail:shixinss@sina.com

收稿日期: 2013-03-04

  修回日期: 2013-04-25

  网络出版日期: 2013-07-01

基金资助

中央高校基本科研业务费专项资金 (2012FZA4004);国家科技支撑计划(2011BAF13B10)

Research on the Stiffness Performance for Robot Machining Systems

  • QU Weiwei ,
  • HOU Penghui ,
  • YANG Genjun ,
  • HUANG Guanping ,
  • YIN Fucheng ,
  • SHI Xin
Expand
  • 1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
    2. AVIC Shaanxi Aircraft Industry (Group) Company Limited, Hanzhong 723000, China

Received date: 2013-03-04

  Revised date: 2013-04-25

  Online published: 2013-07-01

Supported by

Fundamental Research Funds for the Central Universities (2012FZA4004); National Key Technology Research and Development Program of China (2011BAF13B10)

摘要

工业机器人以其高精度、高效率、低成本和可扩展性等优势正被逐步应用到航空制造领域。然而串联机器人的结构弱刚度问题成为影响其末端定位精度及加工动态性能的首要因素。本文应用冗余机器人的自运动特性,对附加第七轴的机器人刚度性能优化展开研究。首先,基于传统刚度映射模型,通过辨识实验获得机器人关节刚度;然后,在加工位姿及关节角度约束下,以机器人末端刚度椭球沿待加工曲面主法矢方向的半轴长度为优化指标,采用遗传算法进行机器人姿态优化;最后,对优化前后机器人变形进行对比分析,分析结果表明机器人刚度性能优化对增强机器人定位精度、改善加工性能具有重要意义。

本文引用格式

曲巍崴 , 侯鹏辉 , 杨根军 , 黄官平 , 尹富成 , 石鑫 . 机器人加工系统刚度性能优化研究[J]. 航空学报, 2013 , 34(12) : 2823 -2832 . DOI: 10.7527/S1000-6893.2013.0227

Abstract

Industrial robot is widely used in aviation manufacturing for its high precision, high efficiency and good expansibility. However, the low stiffness of a serial structure has been a primary factor affecting the end positioning accuracy and dynamic properties. This paper studies the stiffness property optimization for a redundant robot with an extra 7th axis. First, the joint stiffness values are obtained by experiment identification based on a conventional stiffness model. Then a genetic algorithm is employed to conduct the posture optimization under a given position and orientation constraint so as to allow the length of the semiaxis of the stiffness ellipsoid to reach its maximum along the normal direction of the workpiece. Finally,contrast experiments are carried out and the results show that the optimization method is of great significance for enhancing the positioning precision and improving machining properties.

参考文献

[1] Bi S S, Liang J, Zhan Q, et al. Applications of robotics technology in aviation industry. Aeronautical Manufacturing Technology, 2009(4):34-39.(in Chinese) 毕树生, 梁杰, 战强, 等. 机器人技术在航空工业中的应用.航空制造技术, 2009(4):34-39.

[2] Zhang H, Wang J J, Zhang G G. Machining with flexible manipulator: toward improving robotic machining performance. Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey, 2005:1127-1132.

[3] Qu W W, Dong H Y, Ke Y L. Pose accuracy compensaion technology in robot-aid aircraft assembly drilling process. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960.(in Chinese) 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术. 航空学报, 2011, 32(10): 1951-1960.

[4] Wang M X, Wang P F, Song Y M, et al. Stiffness analysis of a 4-DOF hybrid robot. Journal of Mechanical Engineering, 2011, 47(15):9-16.(in Chinese) 汪满新, 王攀峰, 宋轶民, 等. 4自由度混联机器人静刚度分析. 机械工程学报, 2011, 47(15):9-16.

[5] Du Z C, Yu Y Q, Liu S Z. Stiffness analysis of parallel robot with flexible links. Machine Design, 2007, 24(9):32-34. (in Chinese) 杜兆才, 余跃庆, 刘善增. 含弹性杆件的并联机器人刚度分析. 机械设计, 2007, 24(9): 32-34.

[6] Huang C T, Hung W-H, Kao I. New conservative stiffness mapping for the Stewart-Gough platform. Proceedings of the 2002 IEEE International Conference on Robotics & Automation, 2002:823-828.

[7] Niku S B. Introduction to robotics—analysis, system and application. Sun F C, Zhu J H, Liu G D, translated. Beijing: Publishing House of Electronics Industry, 2004: 107-130. (in Chinese) Niku S B. 机器人学导论——分析、系统及应用. 孙富春, 朱纪洪, 刘国栋, 译. 北京: 电子工业出版社, 2004: 107-130.

[8] Chen S-F, Kao I. Geometrical approach to the conservative congruence transformation (CCT) for robotics stiffness control. Proceedings of the 2002 IEEE International Conference on Robotics & Automation, 2002: 544-549.

[9] Ang Jr M H, Wang W, Loh R N K, et al. Passive compliance from robot limbs and its usefulness in robotic automation. Journal of Intelligent and Robotic Systems, 1997, 20 (1): 1-21.

[10] Pashkevich A, Klimchik A, Chablat D. Enhanced stiffness modeling of manipulators with passive joints. Mechanism and Machine Theory, 2011, 46(5): 662-679.

[11] Zargarbashi S H H, Khan W, Angeles J. The Jacobin condition number as a dexterity index in 6R machining robots. Robotics and Computer-Integrated Manufacturing, 2012, 28(6):694-699.

[12] Xiong Y L, Ding H, Liu E C, et al. Robotics. Beijing: China Machine Press, 1993: 10-100. (in Chinese) 熊有伦, 丁汉, 刘恩沧, 等.机器人学. 北京:机械工业出版社, 1993: 10-100.

[13] Cai Z X. Robotics. Beijing:Tsinghua University Press, 2000: 46-126. (in Chinese) 蔡自兴. 机器人学. 北京:清华大学出版社, 2000:46-126.

[14] Abele E, Weigold M, Rothenbucher S. Modeling and identification of a industrial robot for machining applications. Annals of the CIRP, 2007, 56(1): 387-390.

[15] Dumas C, Caro S, Garnier S, et al. Joint stiffness identification of six-revolute industrial serial robots. Robotics and Computer-Integrated Manufacturing, 2011, 27(4):881-888.

[16] Dumas C, Caro S, Cherif M, et al. A methodology for joint stiffness dentification of serial robots. The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010: 464-469.

[17] Shi L J. Study on the static stiffness and dynamics for a 3-DOF robot with flexible joints. Qinhuangdao: College of Mechanical Engineering, Yanshan University, 2006. (in Chinese) 师丽菊. 三自由度弹性铰链机器人静刚度与动力学研究. 秦皇岛: 燕山大学机械工程学院, 2006.

[18] Angeles J. On the nature of the Cartesian stiffness matrix. Ingenieria Mecanica, Tecnologia Y Desarrollo, 2010, 3(5): 163-170.

[19] Yang Y, Zhang Q X. Optimal grasping planning of multi-fingered dexterous hands based on generalized force ellipsoid. Mechanical Science and Technology, 2001, 20(4): 547-550.(in Chinese) 杨洋, 张启先. 多指灵巧手基于广义力椭球的最优抓持规划. 机械科学与技术, 2001, 20(4): 547-550.

[20] Yan R, Chen W, Peng F Y, et al. Closed-loop stiffness modeling and stiffness index analysis for multi-axis machining system. Journal of Mechanical Engineering, 2012, 48(1): 177-184. (in Chinese) 闫蓉, 陈威, 彭芳瑜, 等. 多轴加工系统闭链刚度场建模与刚度性能分析. 机械工程学报, 2012, 48(1): 177-184.

[21] Wang Y X, Wu C, Hu X X, et al. Annealing-genetic algorithm for constrained optimization problems.High Technology Letters, 2004, 14(7): 10-14. (in Chinese) 王跃宣, 吴澄, 胡昔祥, 等. 求解约束优化问题的退火遗传算法. 高技术通讯, 2004, 14(7): 10-14.

[22] Mu S, Su H, Mao W J, et al. A new genetic algorithm to handle the constrained optimization problem. Proceedings of the 41st IEEE Conference on Decision and Control, 2002: 739.

[23] Wu Q Z. Operational research and the optimum method. Beijing: China Machine Press, 2008: 129-156. (in Chinese) 吴祁宗.运筹学与最优化方法. 北京:机械工业出版社, 2008: 129-156.

[24] Lei Y J, Zhang S W, Li X W. MATLAB genetic algorithm toolbox and application. Xi'an: Xidian University Press, 2005: 95-105. (in Chinese) 雷英杰, 张善文, 李续武. MATLAB遗传算法工具箱及应用. 西安: 西安电子科技大学出版社, 2005: 95-105.

文章导航

/