基于目标压力分布的旋翼先进气动外形反设计分析方法
收稿日期: 2013-04-18
修回日期: 2013-05-23
网络出版日期: 2013-06-28
基金资助
国家自然科学基金(11272150)
Inverse Design Analysis Method on Rotor with Advanced Aerodynamic Configuration Based upon Target Pressure Distribution
Received date: 2013-04-18
Revised date: 2013-05-23
Online published: 2013-06-28
Supported by
National Natural Science Foundation of China (11272150)
基于雷诺平均Navier-Stokes(RANS)方程、运动嵌套网格、目标压力分布及余量修正方法,构建了一套直升机旋翼桨叶先进气动外形反设计方法。为避免由桨叶气动外形变化导致的网格畸变,发展了一套基于Poisson方程求解的旋翼桨叶结构化贴体正交网格的快速、自动化生成方法,为提高运动嵌套网格的生成质量和通用性,采用剖面间网格插值与桨尖翻折相结合的方法,同时建立了基于“Top Map”和“Inverse Map”相结合的洞边界划定和贡献单元搜寻的新方法。基于Navier-Stokes方程和双时间法建立了旋翼非定常流场模拟方法,通量求解采用Roe-MUSCL格式,并使用低速预处理法来克服前飞旋翼流场收敛中遇到的刚性问题。在计算流体力学(CFD)方法基础上,基于旋翼翼型压力系数余量联立各方位角处的反设计MGM(Modified Garabedia-McFadden)超定方程组,并依据激波分离、失速等约束设置了各方位角处的反设计权重系数,创建了基于MGM超定方程组最小二乘解的旋翼气动外形(翼型)设计方法。应用所建立的方法,分别针对多目标、多状态和前飞时的旋翼(翼型)气动外形进行反设计分析,验证了本文方法的有效性。最后,将该方法拓展应用到旋翼桨尖气动外形设计中,设计得到与UH-60A直升机旋翼气动特性相似的矩形桨叶外形。
赵国庆 , 招启军 . 基于目标压力分布的旋翼先进气动外形反设计分析方法[J]. 航空学报, 2014 , 35(3) : 744 -755 . DOI: 10.7527/S1000-6893.2013.0267
An inverse design method for a helicopter rotor with advanced aerodynamic configuration is established based on Reynolds-averaged Navier-Stokes (RANS) equations, moving-embedded grids, target pressure distributions and the iterative residual correction principle. In order to avoid the distortion of the grids around the blade due to configuration change, a fast and automated generation method of the body-fitted and orthogonal grids around the rotor blade is employed by solving the Poisson equations. To improve the quality and robustness of the moving-embedded grids, a strategy of grid generation is proposed by combining the interpolation of section grids and the folding of blade tip grids. Simultaneously, a new approach for determining the hole boundary and searching donor cells is created by the combination of "Top Map" and "Inverse Map" methods. The solution of the unsteady flowfield of the rotor is accomplished by employing the Navier-Stokes equations and a dual-time scheme. The convective flux is calculated by a Roe-MUSCL scheme, and a preconditioning approach is employed to overcome the stiffness of flowfield convergence. Based upon the computational fluid dynamics (CFD) numerical simulation, the MGM (Modified Garabedia-McFadden) inverse design overdetermined equations are established at different azimuthal angles based on the residual of pressure coefficients, and the weight factors at different azimuthal angles are set up according to the restriction of shock wave separation and dynamic stall. An inverse design method for the aerodynamic configuration (airfoil) of the rotor is developed by the least square solution of the overdetermined MGM equations. The inverse design analyses on multi-target, multi-state and rotor (airfoil) aerodynamic configurations in forward flight are performed respectively by using the present method, and the effectiveness of the method is identified. Finally, the inverse design method is used successfully to design a rectangular rotor with new airfoils which possesses aerodynamic characteristics similar to the UH-60A helicopter rotor with its new tip blade.
[1] Leishman J G. Rotorcraft aeromechanics: getting through the dip[J]. Journal of the American Helicopter Society, 2010, 55(1): 011001-1-011001-24.
[2] Wang S C, Xu G H. Progress of helicopter rotor aerodynamics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(3): 203-211. (in Chinese) 王适存, 徐国华. 直升机旋翼空气动力学的发展[J].南京航空航天大学学报, 2001, 33(3): 203-211.
[3] Yang H, Song W P, Han Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1218-1226. (in Chinese) 杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报, 2012, 33(7): 1218-1226.
[4] Lee S W, Kwon O J. Aerodynamic shape optimization of rotor blades in hover using a unstructured meshes[C]//Proceedings of the 60th Annual Forum of AHS International, 2004, 1: 536-547.
[5] Wang B, Zhao Q J, Xu G H. Numerical optimization of helicopter rotor twist distribution in hover[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1163-1172. (in Chinese) 王博, 招启军, 徐国华. 悬停状态直升机桨叶扭转分布的优化数值计算[J].航空学报, 2012, 33(7): 1163-1172.
[6] Yu J, Paraschivoiu I, Saeed F. Iterative inverse design method based on streamline equations[J]. Journal of Aircraft, 2004, 41(4): 821-828.
[7] Liu X D, Yang X D. Inverse design for wing of multi-point aerodynamic based on adjoint method[J]. Aeronautical Computing Technique, 2012, 42(5): 60-64.(in Chinese) 刘晓冬, 杨旭东. 基于伴随方法的机翼多设计点气动反设计方法[J]. 航空计算技术, 2012, 42(5): 60-64.
[8] Garabedian P, Mcfadden G. Design of supercritical swept wings[J]. AIAA Journal, 1982, 20(3): 289-291.
[9] Kim H J, Rho O H. Aerodynamic design of transonic wings using the target pressure optimization approach[J]. Journal of Aircraft, 1998, 35(5): 671-677.
[10] Whyte P H. Use of CFD in helicopter aerodynamic design[J]. Canadian Aeronautics and Space Journal, 1988, 34(2): 92-101.
[11] Malone J B, Narramore J C. Airfoil design method using the N-S equations[J]. Journal of Aircraft, 1991, 28(3): 216-224.
[12] Hassan A A, Charles B D. Airfoil design for helicopter rotor blades-a three-dimensional approach[J]. Journal of Aircraft, 1997, 34(2): 197-205.
[13] Li J Z, Gao Z H, Zhan H. Study on inverse design method of airfoil based on optimization of target pressure distribution[J]. Journal of Projectiles Rockets Missiles and Guidance, 2008, 28(1): 187-190. (in Chinese) 李焦赞, 高正红, 詹浩. 基于目标压力分布优化的翼型反设计方法研究[J]. 弹箭与制导学报, 2008, 28(1): 187-190.
[14] Shang K M, Zhao Q J, Zhao G Q, et al. Inverse design analysis on helicopter rotor airfoils and aerodynamic shapes[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5): 550-556. (in Chinese) 尚克明, 招启军, 赵国庆, 等. 直升机旋翼翼型及桨叶气动外形反设计分析[J]. 南京航空航天大学学报, 2010, 42(5): 550-556.
[15] Tapia F, Sanker L N, Schrage D P. An inverse aerodynamic design method for rotor blades[J]. Journal of the American Helicopter Society, 1997, 42(4): 321-326.
[16] Hilgenstock A. A fast method for the elliptic generation of three-dimensional grids with full boundary control[C]//Proceedings of the Second International Conference, 1988: 137-146.
[17] Wang B, Zhao Q J, Xu G, et al. A new moving-embedded grid method for numerical simulation of unsteady flow-field of the helicopter rotor in forward flight[J]. Acta Aerodynamica Sinica, 2012, 30(1): 14-21. (in Chinese) 王博, 招启军, 徐广, 等. 一种适合于旋翼前飞非定常流场计算的新型运动嵌套网格方法[J]. 空气动力学学报, 2012, 30(1): 14-21.
[18] Zhao Q J, Xu G H, Zhao J G. Numerical simulations of the unsteady flowfield of helicopter rotors on moving embedded grids[J]. Aerospace Science and Technology, 2005, 9(2): 117-124.
[19] Pletcher R H, Chen K H. On solving the compressible Navier-Stokes equations for unsteady flows at very low mach numbers, AIAA-1993-3368[R]. Reston: AIAA, 1993.
[20] Breley W R, Mcdonald H. An overview and generalization of implicit Navier-Stokes algorithms and approximate factorization[J]. Computers & Fluids, 2001, 30(7-8): 807-828.
/
〈 | 〉 |