流体力学与飞行力学

基于RANS-LES混合方法的翼型大迎角非定常分离流动研究

  • 刘周 ,
  • 杨云军 ,
  • 周伟江 ,
  • 龚安龙
展开
  • 中国航天空气动力技术研究院, 北京 100074
刘周 男,硕士,高级工程师。主要研究方向:计算流体力学、飞行器气动外形设计。Tel:010-68743745 E-mail:zhou_liu@foxmail.com;杨云军 男,博士,研究员。主要研究方向:飞行器动态特性、计算流体力学。Tel:010-68374026 E-mail:yangyj1998@163.com

收稿日期: 2013-03-18

  修回日期: 2013-05-17

  网络出版日期: 2013-06-28

基金资助

国家自然科学基金(90916001)

Study of Unsteady Separation Flow Around Airfoil at High Angle of Attack Using Hybrid RANS-LES Method

  • LIU Zhou ,
  • YANG Yunjun ,
  • ZHOU Weijiang ,
  • GONG Anlong
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2013-03-18

  Revised date: 2013-05-17

  Online published: 2013-06-28

Supported by

National Natural Science Foundation of China (90916001)

摘要

使用雷诺平均Navier-Stokes方程-大涡模拟(RANS-LES)混合方法中的延迟分离涡模拟(DDES)方法,模拟了NACA 0015翼型在大迎角下的静态绕流和强迫振荡运动并与实验值进行了比较。在大迎角静态翼型大分离流动模拟中,DDES方法捕获了非定常RANS计算未能获得的机翼背风面的涡脱落现象。在所采用的RANS和DDES模型中,基于剪切应力输运(SST)湍流模型的SST-DDES混合方法给出的时均压力系数分布与实验吻合得最好。在大迎角强迫振荡翼型绕流模拟中,DDES方法得到的非定常气动载荷与实验值吻合得很好,正确地反映了最大迎角处阻力和俯仰力矩的阶跃性突变,而非定常RANS计算则给出了完全错误的趋势。

本文引用格式

刘周 , 杨云军 , 周伟江 , 龚安龙 . 基于RANS-LES混合方法的翼型大迎角非定常分离流动研究[J]. 航空学报, 2014 , 35(2) : 372 -380 . DOI: 10.7527/S1000-6893.2013.0263

Abstract

A delayed detached eddy simulation (DDES) method, which is a hybrid Reynolds average Navier-Stokes-large eddy simulation (RANS-LES) method, is proposed for static and oscillating NACA 0015 airfoil flow simulations and the computational results are compared with experiment data. The vortex shedding phenomenon of the massive separation flow on the leeward of the airfoil at high angles of attack is captured by the DDES method in static simulations, while it is ignored in unsteady RANS computations. The time averaged pressure coefficients given by the SST-DDES method which is based on the original shear stress transport (SST) turbulence model agree very well with experiment data in all proposed RANS and DDES models. The unsteady aerodynamic loads hysteresis curves obtained by the DDES method in forced oscillation airfoil flow computation at high angles of attack agree with the experiment data better than the traditional unsteady RANS simulation results do, and the step jump of the drag and pitch moment coefficients at the maximum angle of attack is described accurately, while the RANS method gives the absolutely wrong trend.

参考文献

[1] Spalart P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 181-202.

[2] Strelets M K. Detached eddy simulation of massively separated flows, AIAA-2001-0879[R]. Reston: AIAA, 2001.

[3] Shur M L, Spalart P R, Strelets M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.

[4] Baurle R A, Tam C J, Edwards J R, et al. Hybrid simulation approach for cavity flows: blending, algorithm, and boundary treatment issues[J]. AIAA Journal, 2003, 41(8): 1463-1480.

[5] Sanchez-Rocha M, Kirtas M, Menon S. Zonal hybrid RANS-LES Method for static and oscillating airfoils and wings, AIAA-2006-1256[R]. Reston: AIAA, 2006.

[6] Lynch C E, Smith M J. Hybrid RANS-LES turbulence models on unstructured grids, AIAA-2008-3854[R]. Reston: AIAA, 2008.

[7] Menter F R, Egorov Y. A scale-adaptive simulation model using two-equation models, AIAA-2005-1095[R]. Reston: AIAA, 2005.

[8] Menter F R, Kuntz M, Bender R. A scale-adaptive simulation model for turbulent flow predictions, AIAA-2003-0767[R]. Reston: AIAA, 2003.

[9] Xiao Z X, Liu J, Luo K Y, et al. Numerical investigation of massively separated flows past rudimentary landing gear using advanced DES approaches[J]. AIAA Journal, 2013, 51(1): 107-125.

[10] Krishnan V, Squires K D, Forsythe J R. Prediction of the flow around a circular cylinder at high Reynolds number, AIAA-2006-0901[R]. Reston: AIAA, 2006.

[11] Xiao Z X, Liu J, Huang J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5): 1119-1136.

[12] Vatsa V N, Lockard D P. Assessment of hybrid RANS/LES turbulence models for aeroacoustics applications, AIAA-2010-4001[R]. Reston: AIAA, 2010.

[13] Lorenzo A, Valero E, de Pablo V. DES/DDES post-stall study with iced airfoil, AIAA-2011-1103[R]. Reston: AIAA, 2011.

[14] Deck S. Detached-eddy simulation of transonic buffet over a supercritical airfoil, AIAA-2004-5378[R]. Reston: AIAA, 2004.

[15] Morton S. Detached-eddy simulations of vortex breakdown over a 70-degree delta wing[J]. Journal of Aircraft, 2009, 46(3): 746-755.

[16] Bai J Q, Wang B, Sun Z W. The application of numerical simulation of delta wing with blunt leading edge using RANS/LES hybrid method[J]. Acta Aerodynamica Sinica, 2012, 30(3): 373-379.

[17] Wang G, Ye Z Y. Study of the unsteady flow around a delta wing at high incidence using detached eddy simulation[J]. Journal of Northwestern Polytechnical University, 2008, 26(4): 413-418. (in Chinese) 王刚, 叶正寅. 运用非定常DES方法数值模拟三角翼大迎角流动[J]. 西北工业大学学报, 2008, 26(4): 413-418.

[18] Li X L, Yang Y, Zhang Q, et al. Numerical simulation of shock/vortex interaction in transonic flow around a delta wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 750-761. (in Chinese) 李喜乐, 杨永, 张强, 等. 绕跨声速三角翼的激波/涡干扰流场数值模拟[J]. 航空学报, 2013, 34(4): 750-761.

[19] Bai J Q, Zhang Y, Hua J. Application of filter-SST method in airfoil deep stall simulation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 979-987. (in Chinese) 白俊强, 张扬, 华俊. 一种滤波SST方法在翼型深失速模拟中的应用[J]. 航空学报, 2013, 34(5): 979-987.

[20] Chen L, Wu Y Z, Xia J. High Reynolds number cavity acoustic numerical simulation using DES[J]. Chinese Journal of Computational Mechanics, 2011, 28(5): 749-753. (in Chinese) 陈龙, 伍贻兆, 夏健. 基于DES的高雷诺数空腔噪声数值模拟[J]. 计算力学学报, 2011, 28(5): 749-753.

[21] Lawson S J, Barakos G N. Assessment of passive flow control for transonic cavity flow using detached-eddy simulation[J]. Journal of Aircraft, 2009, 46(3): 1009-1029.

[22] Yuan X X, Deng X B, Xie Y F, et al. Research on the RANS/LES hybrid method for supersonic/hypersonic turbulence flow[J]. Acta Aerodynamica Sinica, 2009, 27(6): 723-728. (in Chinese) 袁先旭, 邓小兵, 谢昱飞, 等. 超声速湍流流场的RANS/LES混合计算方法研究[J]. 空气动力学学报, 2009, 27(6): 723-728.

[23] Gao R Z, Yan C. LES/RANS hybrid method for supersonic axisymmetric base flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1095-1099. (in Chinese) 高瑞泽, 阎超. LES/RANS混合方法对超声速底部流动的应用[J]. 北京航空航天大学学报, 2011, 37(9): 1095-1099.

[24] Weiss P E, Deck S. On the control of turbulent axisymmetric separating/reattaching flows using zonal detached eddy simulation, AIAA-2010-5087[R]. Reston: AIAA, 2010.

[25] Chen J T, Zhang P H, Zhou N C, et al. Application of detached-eddy simulation based on Spalart-Allmaras turbulence model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7): 905-909. (in Chinese) 陈江涛, 张培红, 周乃春, 等. 基于SA湍流模型的DES方法应用[J]. 北京航空航天大学学报, 2012, 38(7): 905-909.

[26] Xiao Z X, Fu S. Study on supersonic base flow using RANS/LES methods[J]. Chinese Journal of Computational Physics, 2009, 26(2): 221-230. (in Chinese) 肖志祥, 符松. 用RANS/LES混合方法研究超声速底部流动[J]. 计算物理, 2009, 26(2): 221-230.

[27] Liu X Q, Wu Y Z. The computation of the lateral jet turbulence flow using DES method[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(3): 209-213. (in Chinese) 刘学强, 伍贻兆. 用DES数值模拟具有横向喷流的紊流流场[J]. 航空学报, 2004, 25(3): 209-213.

[28] Baurle R A, Edwards J R. Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[J]. AIAA Journal, 2010, 48(3): 551-571.

[29] Sun M B, Liang J H, Wang Z G. Hybrid RANS/LES simulation for scalar transport of slot injection into a supersonic stream[J]. Chinese Quarterly of Mechanics, 2007, 28(3): 395-399. (in Chinese) 孙明波, 梁剑寒, 王振国. 超声速来流横向狭缝喷流标量输运的混合RANS/LES模拟[J]. 力学季刊, 2007, 28(3): 395-399.

[30] Spalart P R, Deck S, Shur M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoritical and Computational Fluid Dynamics, 2006, 20(3): 181-195.

[31] Spalart P R. Trends in turbulence treatments. AIAA-2000-2306[R]. Reston: AIAA, 2000.

[32] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.

[33] Piziali R A. 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall, NASA TM-4632[R]. Washington, D.C.: NASA, 1994.

[34] Spalart P R. Young person's guide to detached-eddy simulation grids, NASA CR-2001-211032[R]. Washington, D.C.: NASA, 2001.

[35] Roe P. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2): 250-258.

[36] Mavriplis D J. Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes, NASA CR-2003-212683[R]. Washington, D.C.: NASA, 2003.

[37] Venkatakrishnan V. On the accuracy of limiters and convergence to steady state solutions, AIAA-1993-0880[R]. Reston: AIAA, 1993.

[38] Krist S L, Biedron R T, Rumsey C L. CFL3D user's manual (Version 5.0), NASA TM-1998-208444[R]. Washington, D.C.: NASA, 1998.

[39] Sharov D, Nakahashi K. Reordering of 3-D hybrid unstructured grids for vectorized LU-SGS Navier-Stokes computations, AIAA-1997-2102[R]. Reston: AIAA, 1997.

文章导航

/