固体力学与飞行器总体设计

镍基单晶合金多轴非对称循环加载应力弱化损伤与低周疲劳研究

  • 丁智平 ,
  • 曾军 ,
  • 陈吉平
展开
  • 湖南工业大学 机械工程学院, 株洲 412007
丁智平男,博士,教授。主要研究方向:机械结构强度、材料疲劳断裂损伤。Tel:0731-22183569E-mail:dzp0733@sohu.com;曾军男,硕士研究生。主要研究方向:机械结构强度。E-mail:zengjun6462378@163.com

收稿日期: 2013-03-14

  修回日期: 2013-06-13

  网络出版日期: 2013-06-24

基金资助

国家自然科学基金(50875080);湖南省研究生科研创新基金(CX201313410);湖南省十二五重点学科资助(机械工程)

Study on Stress-weakening Damage and Low Cycle Fatigue of Ni-based Single Crystal Superalloy Under Multiaxial Asymmetric Loading

  • DING Zhiping ,
  • ZENG Jun ,
  • CHEN Jiping
Expand
  • School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China

Received date: 2013-03-14

  Revised date: 2013-06-13

  Online published: 2013-06-24

Supported by

National Natural Science Foundation of China (50875080); Hunan Province Graduate Research Innovation Fund (CX2013B410); Hunan Province 12th Five Plan Key Discipline Founding (Mechanical Engineering)

摘要

研究DD3镍基单晶合金在高温多轴非对称循环载荷下的低周疲劳特性,对比分析试样的应力应变响应和试验参数与疲劳寿命的关系,发现材料的循环硬化、软化特性与温度、加载相位角、应变加载路径有关;低周疲劳试验的轴向应变范围对疲劳破坏的贡献较大,切向应变范围的贡献较小;在轴向非对称循环载荷作用下,不同取向的试样均表现出应力松弛和非弹性应变累积现象,存在应力弱化损伤。引入与疲劳寿命呈指数函数关系的参量 F 表征材料在高温非对称循环载荷下产生的应力弱化损伤,结合von Mises等效应变范围、单晶应力三轴性因子和晶体取向函数构造循环塑性应变能作为疲劳损伤参量,建立疲劳寿命预测模型,利用低周疲劳试验数据进行多元线性回归分析,表明模型与试验寿命具有很好的相关性。

本文引用格式

丁智平 , 曾军 , 陈吉平 . 镍基单晶合金多轴非对称循环加载应力弱化损伤与低周疲劳研究[J]. 航空学报, 2013 , 34(12) : 2768 -2776 . DOI: 10.7527/S1000-6893.2013.0305

Abstract

This paper presents a study of the tension/torsion low cycle fatigue characteristics under asymmetric cycle loading of nickel-based single crystal superalloy DD3. The stress strain response of specimens and the relationship between test parameters and fatigue life are analyzed. It is discovered that the cyclic hardening and softening characteristics of the material are related to the temperature, loading phase angle and strain loading path; tensile strain range has more contribution than shear strain range to low cycle fatigue failure; specimens all exhibit stress relaxation and gradual micro plastic deformation accumulation under asymmetric cyclic tensile loading; and there exists stress weakening damage. A parameter F which has an exponential function relationship with fatigue life is proposed by considering the stress-weakening damage produced in asymmetric cyclic loading. Combined with the stress-weakening damage F, von Mises stress range, the stress triaxiality factor and crystallographic orientation function, a formula of cyclic plasticity strain energy is put forward as a failure parameter, and a fatigue prediction model is built. Multiple linear regression analysis of low cycle fatigue test data shows that the model has good correlation with the failure cycle.

参考文献

[1] Ding Z P. Study on multiaxial low cycle fatigue damage of single crystal Ni-based superally. Changsha: College of Mechanical Engineering, Center South University, 2005. (in Chinese) 丁智平. 复杂应力状态镍基单晶高温合金低周疲劳损伤研究. 长沙: 中南大学机电工程学院, 2005.

[2] Su D D. Stress relaxation and prevetion of the spring steel. Tianjin: Tianjin University Press, 2002: 395-420.(in Chinese) 苏德达. 弹簧(材料)应力松弛及预防. 天津:天津大学出版社, 2002: 395-420.

[3] Wang M W, Wang C Y, Yang J X, et al. Study of high temperature stress relaxation behavior of BT20 alloy. Rare Metal Materials and Engineering, 2012, 41(3): 502-505.(in Chinese) 王明伟, 王春燕, 杨继新, 等. BT20钛合金高温应力松弛行为研究.稀有金属材料与工程, 2012, 41(3): 502-505.

[4] Wei D S, Wang Y R, Wang X P, et al. Life predicition method based on characteristic of cyclic stress. Journal of Aerospace Power, 2012, 27(10): 2342-2347.(in Chinese) 魏大胜, 王延荣, 王相平, 等. 基于应力循环特征的裂纹萌生寿命预测方法. 航空动力学报, 2012, 27(10): 2342-2347.

[5] Wang Y X. Stress relaxation behavior of the spring steel. Sichuan: School of Mechanics and Engineering, Southwest Jiaotong University, 2012.(in Chinese) 王延喜. 弹簧钢的应力松弛行为研究. 四川: 西南交通大学力学与工程学院, 2012.

[6] Shaa J J, Park J S, Hinoki T, et al. Bend stress relaxation of advanced SiC-based fibers and its prediction to tensile creep. Mechanics of Materials, 2007, 39(2): 175-182.

[7] Sun G Q, Shang D G, Chen J H. et al. Multiaxial fatigue characteristic and creep behavior for nickel-based superalloy 4169 at high temperature. Journal of Mechanical Strength, 2006, 28(6): 899-903. (in Chinese) 孙国芹, 尚德广, 陈建华, 等. 合金GH4169的高温多轴疲劳特性与蠕变行为研究. 机械强度, 2006, 28(6): 899-903.

[8] Yue Z F, Lv Z Z. A model of multiaxial low cycle fatigue life time of a nickel-base single crystal. Rare Metal Materials and Engineering, 2000, 29(1): 28-31. (in Chinese) 岳珠峰, 吕震宙. 复杂应力状态下镍基单晶合金低周疲劳寿命预测模型. 稀有金属材料工程, 2000, 29(1): 28-31.

[9] Yin Z Y, Cheng X M, Yang H G. Study on strength and life of anisotropic single crystal blade-part: experimental resrarch. International Journal of Fatigue, 2008, 30: 318-323.

[10] Zhao P, He Q H, Li W. et al. Study on low cycle fatigue characteristic of single crystal notched specimens. Journal of Aerospace Power, 2010, 25(11): 2632-2636. (in Chinese) 赵萍, 何清华, 李维, 等. 单晶切口试样低周疲劳特性研究. 航空动力学报, 2010, 25(11): 2632-2636.

[11] Chen J P, Ding Z P, Yin Z Y, et al. Study on low-cycle fatigue experiments and life prediction of single crystal nickel-based superalloys under asymmetrical cyclic load. Acta Mechanica Solida Sinica, 2007, 28(2): 115-120. (in Chinese) 陈吉平, 丁智平, 尹泽勇, 等. 镍基单晶合金非对称循环载荷低周疲劳实验研究与寿命预测. 固体力学学报, 2007, 28(2): 115-120.

[12] Ding Z P, Wang T F, Li M, et al. Low cycle fatigue unit cell model for single crystal nickel-base superalloy under multiaxial non-proportional loading. Chinese Journal of Materials Research, 2011, 25(5): 455-463.(in Chinese) 丁智平, 王腾飞, 李明, 等. 镍基单晶合金多轴非比例加载低周疲劳单胞模型. 材料研究学报, 2011, 25(5): 455-463.

[13] Ding Z P, Chen J P, Wang T F, et al. Study on low cycle fatigue of single crystal ni-based superalloy under multiaxial non-proportional loading. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 326-333. (in Chinese) 丁智平, 陈吉平, 王腾飞, 等. 镍基单晶合金多轴非比例加载低周疲劳研究. 力学学报, 2012, 44(2): 326-333.

[14] Gabb T P, Gayda J, Miner R V. Orientation and temperature dependence of some mechanical properties of the single crystal nickel-based superalloy N4: Part two—Low cycle fatigue. Metallurgical Transactions A, 1990, 17A:496-505.

[15] Thorton P H, Davies R G, Johnston T L. The temperature dependence of the flow stress of the γ' phase based upon Ni3Al. Metallurgical Transactions, 1970, 1(1):207-218.

[16] Ding Z P, Chen J P, Yin Z Y, et al. Low-cycle fatigue life predicition of single crystal nickel-based superalloys under asymmetrical ctclic loading. Journal of Aeronautical Materials, 2006, 26(4): 6-10.(in Chinese) 丁智平, 陈吉平, 尹泽勇, 等. 非对称循环载荷下镍基单晶合金低周疲劳寿命预测. 航空材料学报, 2006, 26(4): 6-10.

[17] Li S X, Smith D J. High temperature fatigue-creep behaviour of single crystal SRR99 nikel based superalloys: Part Ⅱ—fatigue-creep life behaviour. Fatigue & Fracture of Engineering Materials & Structure, 1995, 18(5): 631-643.

[18] Ding Z P, Liu Y L, Yin Z Y, et al. Low cycle fatigue life prediction for single crystal nickel-based superalloy. Rare Metal Materials and Engineering, 2006, 35(10): 1548-1553. (in Chinese) 丁智平, 刘义伦, 尹泽勇, 等. 镍基单晶合金复杂应力状态低周疲劳寿命预测. 稀有金属材料与工程, 2006, 35(10): 1548-1553.

文章导航

/