材料工程与机械制造

钛合金TC4高速切削刀具磨损的有限元仿真

  • 陈燕 ,
  • 杨树宝 ,
  • 傅玉灿 ,
  • 徐九华 ,
  • 苏宏华
展开
  • 1. 南京航空航天大学 机电学院, 江苏 南京 210016;
    2. 安徽工业大学 机械工程学院, 安徽 马鞍山 243032
陈燕 女, 博士, 副教授。主要研究方向: 难加工材料高效精密加工技术。Tel: 025-84895930 E-mail: ninaych@nuaa.edu.cn;杨树宝 男, 博士, 讲师。主要研究方向: 难加工材料高效精密加工技术。Tel: 0555-2316517 E-mail: sbyang2007 @nuaa.edu.cn;傅玉灿 男, 博士, 教授, 博士生导师。主要研究方向: 难加工材料高效精密加工技术。Tel: 025-84895857 E-mail: yucanfu@nuaa.edu.cn;徐九华 男, 博士, 教授, 博士生导师。主要研究方向: 难加工材料高效精密加工技术。Tel: 025-84896511 E-mail: jhxu@nuaa.edu.cn;苏宏华 男, 博士, 教授, 博士生导师。主要研究方向: 难加工材料高效精密加工技术。Tel: 025-84892901 E-mail: shh@nuaa.edu.cn

收稿日期: 2013-04-12

  修回日期: 2013-06-13

  网络出版日期: 2013-06-21

基金资助

国家自然科学基金(50775115)

FEM Estimation of Tool Wear in High Speed Cutting of Ti6Al4V Alloy

  • CHEN Yan ,
  • YANG Shubao ,
  • FU Yucan ,
  • XU Jiuhua ,
  • SU Honghua
Expand
  • 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. School of Mechanical Engineering, Anhui University of Technology, Ma'anshan 243032, China

Received date: 2013-04-12

  Revised date: 2013-06-13

  Online published: 2013-06-21

Supported by

National Natural Science Foundation of China (50775115

摘要

借助有限元方法对切削钛合金时硬质合金刀具的磨损进行了仿真。首先,根据钛合金切削时刀具磨损机理,建立了能够综合反映粘结磨损、扩散磨损及磨粒磨损的磨损率模型;通过增大传热系数、平滑节点磨损值等方法,解决了刀具磨损过程中切削温度场的仿真、内部网格的调整及刀具表面轮廓的光滑处理等一系列问题,结合磨损子程序建立了预测刀具磨损的有限元模型。然后,通过切削实验对有限元模型的有效性进行了验证,结果表明:所建立的有限元模型能够较准确的预测刀具前刀面磨损及其磨损形貌。最后,对高速切削钛合金条件下的刀具耐用度进行了预测,预测结果表明:随着速度的增加,刀具会快速磨损,切削速度为300 m/min时刀具寿命仅为130 m/min时的1/3。因此,切削速度的选择要综合考虑切削效率与刀具寿命这两个因素。

本文引用格式

陈燕 , 杨树宝 , 傅玉灿 , 徐九华 , 苏宏华 . 钛合金TC4高速切削刀具磨损的有限元仿真[J]. 航空学报, 2013 , 34(9) : 2230 -2240 . DOI: 10.7527/S1000-6893.2013.0306

Abstract

By adopting the finite element method (FEM), the tool wear is simulated during the cutting of titanium alloy with a carbide tool. First, a wear rate model, which includes the abrasive wear, diffusion wear and adhesion wear, is built according to the tool wear mechanism during the cutting. Then a series of problems in tool wear simulation are solved such as the simulation of the cutting temperature field, adjustment of internal mesh, and the smoothing of tool geometry. Subsequently, an FEM wear prediction model is built and computed in combination with a wear subroutine. The validity of the finite element model is confirmed by cutting tests, which show that the tool rake face wear and wear morphology can be accurately predicted by the finite element model. Finally, tool life is predicted under the conditions of high-speed cutting of titanium alloys. The prediction results show that the cutting tools wear rapidly with the increase of the cutting speed. For example, the tool life with a cutting speed of 300 m/min is only one third of that with a speed of 130 m/min. Therefore, it is important to consider both cutting efficiency and tool life simultaneously in the selection of a cutting speed.

参考文献

[1] Arrazola P J, Garay A, Iriarte L M, et al. Machinability of titanium alloys (Ti6Al4V and Ti555.3). Journal of Materials Processing Technology, 2009, 209(5): 2223- 2230.

[2] Yang X, Liu R C. Machining titanium and its alloys. Machining Science and Technology, 1999, 3(1): 107-139.

[3] Su H H, Liu P, Fu Y C, et al. Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools. Chinese Journal of Aeronautics,2012, 25(5): 784-790.

[4] Taylor F W. On the art of cutting metals. New York: The American Society of Mechanical Engineers, 1907: 31-35.

[5] Hastings W F, Mathew P, Oxley P L B, et al. Estimated cutting temperatures their use as a predictor of tool performance when machining plain carbon steels. Proceedings of the 20th International Machine Tool Design and Research Conference, 1979: 313-320.

[6] Usui E, Shirakashi T, Kitagawa T. Analytical predication of cutting tool wear. Wear, 1984, 100(1-3): 129-151.

[7] Takeyama H, Murata R. Basic investigation of tool wear. Journal of Engineering for Industry, 1963, 85 (1): 33-37.

[8] Kitagawa T, Maekawa K, Shirakashi T, et al. Analytical prediction of flank wear of carbide tools in turning plain carbon steels (Part 1) characteristic equation of flank wear. Bulletin of the Japan Society of Precision Engineering, 1988, 22 (4): 263-269.

[9] Yen Y C, Sohner J, Lilly B, et al. Estimation of tool wear in orthogonal cutting using the finite element analysis. Journal of Materials Processing Technology, 2004, 146(1): 82-91.

[10] Xie L J, Schmidt J, Schmidt C, et al. 2D FEM estimate of tool wear in turning operation. Wear, 2005, 258(10): 1479-1490.

[11] Attanasio A, Ceretti E, Rizzuti S, et al. 3D finite element analysis of tool wear in machining. CIRP Annals-Manufacturing Technology, 2008, 57(1): 61-64.

[12] Attanasio A, Ceretti E, Fiorentino A, et al. Investigation and FEM-based simulation of tool wear in turning operations with uncoated carbide tools. Wear, 2010, 269(5-6): 344-350.

[13] Filice L, Umbrello D, Micari F. FE analyses of tool wear in orthogonal cutting. Proceedings of the Second International Conference on Tribology in Manufacturing Processes, 2004: 187-194.

[14] Filice L, Micari F, Settineri L, et al. Wear modeling in mild steel orthogonal cutting when using uncoated carbide tools. Wear, 2007, 262(5-6): 545-554.

[15] Wang M. Studies on tool wear in milling of titanium alloys. Nanjing: Nanjing Aeronautical Institute, 1985. (in Chinese) 王珉. 钛合金铣削加工中刀具磨损的研究. 南京: 南京航空学院, 1985.

[16] Rabinowicz E, Dunn L A, Russell P G. A study of abrasive wear under three-body conditions. Wear, 1961, 4(5): 345-355.

[17] Archard J F. Contact and rubbing of flat surfaces. Journal of applied physics, 1953, 24(8): 981-988.

[18] Childs T. Metal machining: theory and applications. London: Butterworth-Heinemann, 2000: 77-79.

[19] Shi D F. FEM simulation of tool wear in high speed cutting of titanium alloy Ti6Al4V with hydrogen treatment. Nanjing: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, 2010. (in Chinese) 史德峰. 置氢钛合金TC4高速切削刀具磨损有限元仿真分析. 南京: 南京航空航天大学机电学院, 2010.

[20] Yang S B, Xu J H, Wei W H, et al. Impact of hydrogenation on flow behavior of Ti6Al4V alloy. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 1093-1098. (in Chinese) 杨树宝, 徐九华, 危卫华,等. 置氢处理对TC4钛合金流变行为的影响. 航空学报, 2010, 31(5): 1093-1098.

[21] Zorev N N. Inter-relationship between shear processes occurring along the tool face and shear plane in metal cutting. International Research in Production Engineering, New York: The American Society of Mechanical Engineers, 1963: 42-49.

[22] Kloche F, Raedt H W, Hoppe S. 2D-FEM simulation of the orthogonal high speed cutting process. Machining Science and Technology, 2001, 5(3):323-340.

[23] Umbrello D. Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. Journal of Materials Processing Technology, 2008, 196(1-3): 79-87.

[24] Wei W H, Fundamental research on machinability of titanium alloy by thermohydrogen treatment. Nanjing: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, 2010. (in Chinese) 危卫华. 热氢处理改善钛合金切削加工性的基础研究. 南京: 南京航空航天大学机电学院, 2010.

文章导航

/