固体力学与飞行器总体设计

撞击极限方程预测指标剖析与实例

  • 贾光辉 ,
  • 欧阳智江 ,
  • 蒋辉
展开
  • 北京航空航天大学 宇航学院, 北京 100191
贾光辉 男, 博士, 副教授。主要研究方向: 飞行器结构分析与撞击动力学响应。 Tel: 010-82339067 E-mail: jiaguanghui@buaa.edu.cn

收稿日期: 2013-01-04

  修回日期: 2013-03-14

  网络出版日期: 2013-06-04

基金资助

国家空间碎片专题项目(K020110-1/3/6)

Analysis and Instances of Ballistic Limit Equations’ Predictive Indicators

  • JIA Guanghui ,
  • OUYANG Zhijiang ,
  • JIANG Hui
Expand
  • School of Astronautics, Beihang University, Beijing 100191, China

Received date: 2013-01-04

  Revised date: 2013-03-14

  Online published: 2013-06-04

Supported by

National Space Debris Thematic Project of China (K020110-1/3/6)

摘要

撞击极限方程是空间碎片撞击航天器风险评估的关键技术基础,描述其预测能力的预测指标有多种提法,这给依据预测指标进行撞击极限方程选择时带来较大困惑。通过对以预测概率为基础的预测正确率(包括未失效、失效、总体和安全预测正确率)和以预测直径偏差为基础的预测误差(包括绝对和相对误差)等指标的概念表述,初步规范了各指标的解析表达式,阐述了其性质、取值范围、相互关系等问题。据此,以蜂窝夹层板结构为研究对象,基于国外的131个撞击失效/未失效物理实验数据,对各预测指标在撞击极限方程系数空间上的变化特征作了进一步阐述。结果表明,预测正确率指标在系数空间跳跃变化,而预测误差指标则光滑过渡。

本文引用格式

贾光辉 , 欧阳智江 , 蒋辉 . 撞击极限方程预测指标剖析与实例[J]. 航空学报, 2013 , 34(10) : 2364 -2371 . DOI: 10.7527/S1000-6893.2013.0175

Abstract

Ballistic limit equations are the key technology foundation of spacecraft impact risk assessment from space debris. There is a variety of formulations in describing the predictive indicators about their predictive ability, which often causes confusion in selecting ballistic limit equations in accordance with the predictive indicators. By analyzing the concepts of the indicators, such as correctly predicted rates (including the correctly predicted rates of non-failure, failure, totality and safety) which are based on predicted probability, and prediction errors (including absolute and relative errors) which are based on predicted diameter deviation, the analytical expressions of the indicators are initially standardized, and the properties, value range and relationship between them are expounded, too. Accordingly, keeping the honeycomb sandwich panel structure as the study object and basing on 131 failure/non-failure impact physical experimental case data(from reference), the variation of each predictive indicator in the coefficient space of the ballistic limit equation is further elaborated. The results show that the transitions of the correctly predicted rate indicators are stepped, but the transitions of the prediction error indicators are smooth in the coefficient space.

参考文献

[1] Christiansen E L, Arnold J, Davis A B, et al. Handbook for designing MMOD protection. NASA/TM-2009-214785, 2009.

[2] Lin L X. Status and removal of space debris. Spacecraft Engineering, 2012, 21(3): 1-10. (in Chinese) 林来兴. 空间碎片现状与清理. 航天器工程, 2012, 21(3): 1-10.

[3] IADC WG3 Members. IADC protection manual version 3.3. IADC-04-03, 2004.

[4] Yuan J G, Qu G J, Sun Z G, et al. Optimization methodology for shield structure against space debris. Journal of Astronautics, 2007, 28(2): 243-248. (in Chinese) 袁俊刚, 曲广吉, 孙治国, 等. 空间碎片防护结构设计优化理论方法研究. 宇航学报, 2007, 28(2): 243-248.

[5] Zheng J D, Gong Z Z, Tong J Y. et al. Accuracy analysis of a new Whipple shield ballistic limit equations. Spacecraft Environment Engineering, 2012, 29(2): 134-138. (in Chinese) 郑建东, 龚自正, 童靖宇, 等. 一种新的 Whipple 防护结构弹道极限方程准确率分析. 航天器环境工程, 2012, 29(2): 134-138.

[6] Yan J, Zheng S G, Fan J Y. Influence of determining the accuracy of ballistic limit to the risk assessment from space debris. Proceedings of 2007 National Structural Dynamics Conference. Nanchang: Structural Dynamics Committee of China Vibration Engineering, 2007: 309-313. (in Chinese) 闫军, 郑世贵, 范晶岩. 弹道极限确定精度对空间碎片风险评估的影响. 2007全国结构动力学学术研讨会论文集. 南昌: 中国振动工程学会结构动力学专业委员会, 2007: 309-313.

[7] Schonberg W P, Evans H J, Williamsen J E, et al. Uncertainty considerations for ballistic limit equations. Proceedings of the 4th European Conference on Space Debris. Darmstadt: ESA Publications Division, 2005: 477-482.

[8] Xu X G, Jia G H, Huang H, et al. Integrated method for ballistic limit equations of double plate under hypervelocity impact. Journal of System Simulation, 2011, 23(1): 172-176. (in Chinese) 徐小刚, 贾光辉, 黄海, 等. 双层板超高速撞击弹道极限方程综合建模. 系统仿真学报, 2011, 23(1): 172-176.

[9] Christiansen E L. Design and performance equations for advanced meteoroid and debris shields. International Journal of Impact Engineering, 1993, 14(1-4): 145-156.

[10] Drolshagen G, Borge J. ESABASE/debris meteoroid/debris impact analysis technical description. Issue 1 for ESABASE version 90.1, 1992.

[11] Ryan S, Schaefer F, Destefanis R, et al. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures. Advances in Space Research, 2008, 41(7): 1152-1166.

[12] Lambert M, Schfer F K, Geyer T. Impact damage on sandwich panels and multi-layer insulation. International Journal of Impact Engineering, 2001, 26(1-10): 369-380.

[13] Taylor E A, Herbert M K, Vaughan B A M, et al. Hypervelocity impact on carbon fibre reinforced plastic/aluminium honeycomb: comparison with Whipple bumper shields. International Journal of Impact Engineering, 1999, 23(1): 883-893.

[14] Schfer F, Destefanis R, Ryan S, et al. Hypervelocity impact testing of CFRP/AL honeycomb satellite structures. Proceedings of the 4th European Conference on Space Debris. Darmstadt: ESA Publications Division, 2005: 407-412.

[15] Schfer F, Schneider E, Lambert M. Review of ballistic limit equations for CFRP structure walls of satellites. Proceedings of the 5th International Symposium on Environmental Testing for Space Programmes. Noordwijk: ESA Publications Division, 2004: 431-443.

文章导航

/