流体力学与飞行力学

双三角翼及其翼身组合的滚转运动特性比较研究

  • 韩冰 ,
  • 徐敏 ,
  • 李广宁 ,
  • 安效民
展开
  • 西北工业大学 航天学院, 陕西 西安 710072
韩冰 男,博士研究生。主要研究方向:气动弹性力学。Tel:029-88494614 E-mail:chihb2008@live.cn;徐敏 女,博士,教授,博士生导师。主要研究方向:气动弹性力学。Tel:029-88494614 E-mail:cfd_csd@163.com

收稿日期: 2013-03-19

  修回日期: 2013-04-28

  网络出版日期: 2013-05-17

基金资助

国家自然科学基金(11202165)

Comparative Research on the Dynamic Rolling Characteristics of Double Delta Wing and Wing-body Configuration

  • HAN Bing ,
  • XU Min ,
  • LI Guangning ,
  • AN Xiaomin
Expand
  • School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-03-19

  Revised date: 2013-04-28

  Online published: 2013-05-17

Supported by

National Natural Science Foundation of China (11202165)

摘要

采用Navier-Stokes方程与滚转运动方程耦合计算方法,比较研究了不同后掠角的双三角翼和翼身组合体的滚转运动特性,分析了机翼前缘后掠角及细长机身对非定常滚转力矩时滞环、动态流场结构和物面瞬时压力分布的影响。研究结果表明:主翼迎风面上的融合涡能量在80°/60°双三角翼上耗散较小,而在76°/40°双三角翼上耗散严重,这是造成两模型滚转力矩稳定性与时滞特性差异的主要因素;机身对气流的扰动作用,大幅增强了滚转力矩的线性分量;机身对气流的上洗作用,增强了边条涡与融合涡吸力及其时滞性,同时加剧了主翼背风面的两涡干扰;大滚转角时机身对横流流动的干扰,使得主翼背风面压力分布的时滞差异显著增加。该研究结果有助于认识后掠角与细长机身影响双三角翼滚转运动特性的物理机理。

本文引用格式

韩冰 , 徐敏 , 李广宁 , 安效民 . 双三角翼及其翼身组合的滚转运动特性比较研究[J]. 航空学报, 2014 , 35(2) : 417 -426 . DOI: 10.7527/S1000-6893.2013.0246

Abstract

This paper establishes a coupled computation system which solves the Navier-Stokes equations and the rolling motion equation alternatively to obtain the rolling motion characteristics of two double delta wing models with different sweep angles and a wing-body configuration. It reveals the effect of the leading edge sweep angle and the slender body on the unsteady rolling moment, the dynamic flowfield and the transient surface pressure distribution. The results show conclusively that the energy dissipation of the merged vortex upon the windward side of the 80°/60° double delta wing is much slighter than that upon the 76°/40° model. The merged vortex energy determines the time lag effect of the dynamic flowfield and the rolling moment. The presence of a slender body dramatically enhances the amplitude of the linear component of the rolling moment. Furthermore, the upwash airstreams around the slender body enhances the suction of the strake, the merged vortex suction and its hysteresis effect. The block of the cross flow caused by the slender body enlarges the time lag of the pressure distribution on the leeward side of the main wing. In general, these results may benefit the understanding for the mechanism of the effect of the sweep angle and slender body on rolling characteristics

参考文献

[1] Ericsson L E. The fluid mechanics of slender wing rock[J]. Journal of Aircraft, 1984, 21(5): 322-328.

[2] Ericsson L E. Wing rock of nonslender delta wings[J]. Journal of Aircraft, 2001, 38(1): 36-41.

[3] Atashbaz G, Ommian M. Experimental investigation of vortex flow over an 80 degree/60 degree double delta wing at sideslip[J]. Journal of Aircraft, 2006, 43(3): 840-842.

[4] Liu W, Yang X L, Zhang H X, et al. A review on investigations of wing rock problems under high angle of attack[J]. Advances in Mechanics, 2008, 38(2): 214-228. (in Chinese) 刘伟, 杨小亮, 张涵信, 等.大攻角运动时的机翼摇滚问题研究综述[J].力学进展, 2008, 38(2): 214-228.

[5] Liu X, Lin J Z, Chen L Z, et al. Numerical simulation of unsteady flow around double-delta wing during pitching motion[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 984-993. (in Chinese) 刘昕, 林敬周, 陈亮中, 等.双三角翼俯仰振荡运动的流场特性数值模拟[J].航空学报, 2012, 33(6): 984-993.

[6] Sohn M H, Chang J W. Effect of a centerbody on the vortex flow of a double-delta wing with leading edge extension[J]. Aerospace Science and Technology, 2010, 14: 11-18.

[7] Li G N. Numerical simulations of Navier-Stokes flows about full aircraft configuration and the developing of CFD program[D]. Xi'an: College of Aeronautics, Northwestern Polytechnical University, 2010. (in Chinese) 李广宁.全机实用外形绕流Navier-Stokes方程数值模拟及其软件开发研究[D].西安: 西北工业大学航空学院, 2010.

[8] Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows, AIAA-1992-0439[R]. Reston: AIAA, 1992.

[9] Roe P. Approximate riemann solvers, parametric vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43: 357-372.

[10] Rizzi A, Eliasson P, Lindblad I, et al. The engineering of multiblock/multigrid software for navier-stokes flows on structured meshes[J]. Computers & Fluids, 1993, 22: 341-367.

[11] Lesoinne M, Farhat C. Geometric conservation laws for flow problems with moving boundaries and deformable meshes and their impact on aeroelastic computations[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 134: 71-90.

[12] Landon R H. NACA0012 oscillatory and transient pitching, AGARD Report 702[R]. France: NATO Research and Technology Organization BP 25, F92201 Neuilly Sur Seine, 1982.

[13] den Boer R G, Cunningham Jr A M. Low-speed unsteady aerodynamics of a pitching straked wing at high incidence—part I: test program[J]. Journal of Aircraft, 1990, 27(1): 23-30.

[14] Li F W, E Q, Li J, et al. Mesh generation technique for complex aerodynamic configurations[J]. Acta Aerodynamic Sinica, 1998, 16(1): 89-96. (in Chinese) 李凤蔚, 鄂秦, 李杰, 等.复杂外形网格生成技术[J].空气动力学学报, 1998, 16(1): 89-96.

[15] Shigeru A, Yasuhiro T, Shigeki T, et al. A study on aerodynamic characteristics of lifting body and wing body configurations for fully reusable launch vehicles, AIAA-2004-2536[R]. Reston: AIAA, 2004.

文章导航

/