流体力学与飞行力学

客机机翼环量分布的气动/结构一体化设计

  • 巨龙 ,
  • 白俊强 ,
  • 孙智伟 ,
  • 陈颂 ,
  • 李权
展开
  • 1. 西北工业大学 航空学院, 陕西 西安 710072;
    2. 中航工业第一飞机设计研究院, 陕西 西安 710089
巨龙男,硕士研究生。主要研究方向:飞行器总体及气动结构设计,飞行器气动学科优化。Tel:029-88492174E-mail:jayjulong@126.com;白俊强男,博士,教授,博士生导师。主要研究方向:飞行器总体及气动设计,计算流体力学,多学科优化。Tel:029-88492174E-mail:junqiang@nwpu.edu.cn

收稿日期: 2013-03-20

  修回日期: 2013-05-12

  网络出版日期: 2013-05-17

Integrated Aero-structure Design of Circulation Distribution for Commercial Aircraft Wing

  • JU Long ,
  • BAI Junqiang ,
  • SUN Zhiwei ,
  • CHEN Song ,
  • LI Quan
Expand
  • 1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2013-03-20

  Revised date: 2013-05-12

  Online published: 2013-05-17

摘要

研究了民用客机机翼设计中的环量分布设计规律。建立了一种以航程为系统级优化目标,融合气动与结构两个学科作为子学科的多学科NAND (Nested Analysis and Design)优化系统。通过合理的简化模型,有效地研究了机翼展向环量分布对结构重量、升阻比和航程这3方面的影响,找到了一种合理的适用于亚声速单通道民用客机的机翼环量分布。利用航程最远环量分布与椭圆形环量分布分别设计一副机翼并进行对比验证,结果表明:使用设计环量分布的机翼较椭圆形环量分布机翼增加了近5%的阻力,但由于结构减重使航程增加了近100 km。在机翼设计过程中阻力最小对全机性能来讲可能并非全局最优,将气动压心合理内移会使全机经济性有所提高。

本文引用格式

巨龙 , 白俊强 , 孙智伟 , 陈颂 , 李权 . 客机机翼环量分布的气动/结构一体化设计[J]. 航空学报, 2013 , 34(12) : 2725 -2732 . DOI: 10.7527/S1000-6893.2013.0253

Abstract

This paper deals with the design rule of commercial aircraft circulation distribution by establishing a NAND (Nested Analysis and Design) formulation. The approach incorporates an aero-structural analysis solver. A method is developed to estimate the wing weight based on fundamental structural principles. The aerodynamic solver is based on the full potential equation with viscosity modification. In order to find the most economical aerodynamic circulation distribution for a commercial aircraft this paper uses range as the object for this formulation. Finally an aerodynamic circulation distribution is found which enhances the aerodynamic resistance and flight distance respectively by 5% and 100 km. The conclusion is made that although elliptical circulation is best for aerodynamic characteristics, it may not be the best for civil aircraft design because of increasing structure weight.This conclusion can serve as a reference during civil aircraft wing design.

参考文献

[1] Yu X Q. Multidisciplinary design optimization aircraft conceptual and preliminary design: statue and directions. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 417-426. (in Chinese) 余雄庆. 飞机总体多学科设计优化的现状与发展方向. 南京航空航天大学学报, 2008, 40(4): 417-426.

[2] Kim Y, Lee D H, Kim Y, et al. Multidisciplinary design optimization of supersonic fighter wing using response surface methodology. AIAA-2002-5408, 2002.

[3] Velden A V, Kelm R, Kokan D, et al. Application of MDO to large subsonic transport aircraft. AIAA-2000-844, 2000.

[4] Shi G, Renaud G, Yang X, et al. Integrated wing design with three disciplines. AIAA-2002-5405, 2002.

[5] Piperni P, Abdo M, Kafyeke F. Preliminary aerostructural optimization of a large business jet. Journal of Aircraft, 2008, 44(5): 1422-1438.

[6] Liem R P, Kenway G K W, Martins J R R A. Multi-point, multi-mission, high-fidelity aerostructural optimization of a long-range aircraft configuration. 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2012.

[7] Zhang K S. Multidisciplinary aerodynamic/structural design optimization for high subsonic transport wing using approximation technique. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 810-815. (in Chinese) 张科施. 基于近似技术的高亚声速运输机机翼气动/结构优化设计. 航空学报, 2006, 27(5): 810-815.

[8] Hu J, Yu X Q. Multidisciplinary optimization of transport wing aerodynamic/structural integrated design. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(4): 458-463. (in Chinese) 胡婕, 余雄庆. 客机机翼气动/结构多学科优化方法.南京航空航天大学学报, 2012, 44(4): 458-463.

[9] Wang C M. Effects of the location changing of the aerodynamic center on the wing structure weight. Chinese Journal of Applied Mechanics, 2012, 29(2): 197-200. (in Chinese) 王春梅. 气动载荷压心变化对机翼结构重量的影响. 应用力学学报, 2012, 29(2): 197-200.

[10] Cramer E J, Demmis Jr J E, Frank P D, et al. Problem formulation for multidisciplinary optimization. AIAA-CRPC-TR93334, 1993.

[11] Balling R J, Wilkinson C A. Execution of multidisciplinary design optimization approaches on common test. AIAA, NASA, and ISSMO, Symposium on Multidisciplinary Analysis and Optimization, 1996.

[12] Marco C. A study of the CST parameterization characteristics. AIAA-2009-3767, 2009.

[13] Eckart Z, Lothar T. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. Transactions on Evolutionary Computation, 1999, 3(4): 257-271.

[14] Qin N, Vavalle A, Le Moigne A, et al. Aerodynamic considerations of blended wing body aircraft. Progress in Aerospace Sciences, 2004, 40(6): 321-343.

[15] CCAR-25-R3. Transport aircraft airworthiness standards. Beijing: Civil Aviation Administration of China, 2001. (in Chinese) CCAR-25-R3. 运输类飞机适航标准. 北京: 中国民用航空局, 2001.

[16] Ardema M D, Chanbers M C, Patron A P. Analytical fuselage and wing weight estimation of transport aircraft. NASA-TM-110392, 1996.

文章导航

/