流体力学与飞行力学

基于等离子体激励的飞翼布局飞行器气动力矩控制

  • 杜海 ,
  • 史志伟 ,
  • 倪芳原 ,
  • 程瑞斌 ,
  • 戴新喜
展开
  • 南京航空航天大学 航空宇航学院, 江苏 南京 210016
杜海 男, 博士研究生。主要研究方向: 实验流体力学。Tel: 025-84896464 E-mail: duhai1986@nuaa.edu.cn;史志伟 男, 博士, 教授。主要研究方向: 非定常空气动力学, 微型飞行器空气动力学。Tel: 025-84896464 E-mail: szwam@nuaa.edu.cn;倪芳原 女, 硕士研究生。主要研究方向: 实验流体力学。Tel: 025-84896464 E-mail: atom_lax@126.com;程瑞斌 男, 硕士研究生。主要研究方向: 实验流体力学。Tel: 025-84896464 E-mail: 302586676@qq.com;戴新喜 男, 本科生。主要研究方向: 实验流体力学。Tel: 025-84896464 E-mail: daixinxi1990@sina.com

收稿日期: 2012-10-15

  修回日期: 2013-03-23

  网络出版日期: 2013-05-07

基金资助

南京航空航天大学基本科研业务费(NS2013013)

Aerodynamic Moment Control of Flying Wing Vehicle Using Plasma Actuators

  • DU Hai ,
  • SHI Zhiwei ,
  • NI Fangyuan ,
  • CHENG Ruibin ,
  • DAI Xinxi
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-10-15

  Revised date: 2013-03-23

  Online published: 2013-05-07

Supported by

NUAA Fundamental Research Funds(NS2013013)

摘要

以飞翼布局飞行器所面临的飞行控制问题为背景,采用气动力测量技术和粒子图像测速(PIV)技术,在来流风速为8.2 m/s时,研究了介质阻挡放电等离子体激励器对飞翼布局飞行器气动力矩的作用。研究结果表明:在飞行器不同位置布置不同的激励器,可以实现对飞行器滚转、偏航及俯仰力矩的控制;改变激励电压,实现了对气动力矩的比例控制;通过与常规舵面的舵效进行比较,采用等离子体激励器获得的气动力矩控制,可以达到常规舵面一定偏转角度的控制效果。流场测量结果表明:等离子体激励器对飞翼布局飞行器气动力矩的控制,主要是通过控制流动分离和前缘涡破碎点位置的变化来实现的。因此,可以考虑应用等离子体流动控制技术来增强传统的舵面控制,并在提高控制效率的基础上,使其成为一种新型的飞行控制方式。

本文引用格式

杜海 , 史志伟 , 倪芳原 , 程瑞斌 , 戴新喜 . 基于等离子体激励的飞翼布局飞行器气动力矩控制[J]. 航空学报, 2013 , 34(9) : 2038 -2046 . DOI: 10.7527/S1000-6893.2013.0186

Abstract

To research the flight control of a flying wing vehicle, an experimental study of the effect of plasma actuators on the vehicle's aerodynamic moment is conducted at the wind speed of 8.2 m/s, using aerodynamic measurement and particle image velocimetry (PIV). The results show that aerodynamic moment control can be realized by using different plasma actuators with different configurations on the vehicle. By changing the driving voltage, the proportional control of the aerodynamic moment is realized. A comparison of the effect of plasma actuators with that of conventional control surfaces demonstrates that the plasma actuators can have the same effect as certain deflecting angles of the control surface. The flow field measurement results show that the flow structure on the wing is changed through restraining the flow separation and controlling the position of vortex breakdown point on the wing, which eventually changes the aerodynamic moment of the vehicle. Thus, the plasma flow control technology can be considered an auxiliary control technology for traditional control surfaces. If the control efficiency is improved, it may be considered a new method for flight control in the future.

参考文献

[1] Wu W K, Zhang B Q. Aerodynamic design of flight. Xi'an: Northwestern Polytechnical University Press, 2005: 172-173. (in Chinese) 武文康, 张彬乾. 战斗机气动布局设计.西安: 西北工业大学出版社, 2005: 172-173.

[2] Traub L W, Gilarranz J L, Rediniotis O K. Delta wing hingeless control via synthetic jet actuation. AIAA-2002-415, 2002.

[3] Moeller E B, Rediniotis O K. Hingeless flow control over a delta wing planform. AIAA-2000-117, 2000.

[4] Croke T C, Post M L. Overview of plasma actuators: concepts, optimization, and applications. AIAA-2005-563, 2005.

[5] Kimmel R L, Hayes J R, Menart J A, et al. Effect of surface plasma discharges on boundary layers at Mach 5. AIAA-2004-509, 2004.

[6] Orlov D M, Corke T C. Numerical simulation of aerodynamic plasma actuator effects. AIAA-2005-1083, 2005.

[7] Corke T C, Matlis E. Phased plasma arrays for unsteady flow control. AIAA-2000-2323, 2000.

[8] Patel M P, Sowle Z H, Corke T C, et al. Autonomous sensing and control of wing stall using a smart plasma slat. AIAA-2006-1207, 2006.

[9] Lopera J, Ng T T, Patel M P, et al. Aerodynamic control of 1303 UAV using windward surface plasma actuators on a separation ramp. AIAA-2007-636, 2007.

[10] Patel M P, Ng T T, Vasudevan S, et al. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle. AIAA-2006-3495, 2006.

[11] Grundmann S, Frey M, Tropea C, et al. Unmanned aerial vehicle (UAV) with plasma actuators for separation control. AIAA-2009-698, 2009.

[12] Nelson R C, Corke T C, He C A, et al. Modification of the flow structure over a UAV wing for roll control. AIAA-2007-884, 2007.

[13] Du H, Shi Z W, Geng X, et al. The directional-lateral aerodynamic control at micro air vehicle using plasma actuators. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1781-1790. (in Chinese) 杜海, 史志伟, 耿玺, 等. 等离子体激励器对微型飞行器横航向气动力矩控制的试验研究. 航空学报, 2012, 33(10): 1781-1790.

[14] Li Y H, Wu Y, Liang H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability. Chinese Sci Bull (Chinese Ver), 2010, 55(31): 3060-3068. (in Chinese) 李应红, 吴云, 梁华, 等.提高抑制流动分离能力的等离子体冲击流动控制原理. 科学通报, 2010, 55(31): 3060-3068.

[15] Rethmel C, Little J, Weit C, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators. AIAA-2011-487, 2011.

文章导航

/