固体力学与飞行器总体设计

一种飞机垂尾抖振载荷识别的新方法

  • 贾有 ,
  • 杨智春
展开
  • 西北工业大学 航空学院 结构动力学与控制研究所, 陕西 西安 710072
贾有 男, 博士研究生。主要研究方向: 气动弹性力学。 Tel: 029-88460461 E-mail: jiayou3464@126.com;杨智春 男, 博士, 教授, 博士生导师。主要研究方向: 气动弹性力学, 结构动力学及结构健康监测。 Tel: 029-88460461 E-mail: yangzc@nwpu.edu.cn

收稿日期: 2012-12-11

  修回日期: 2013-04-04

  网络出版日期: 2013-04-25

基金资助

国家自然科学基金 (11072198,11102162);高等学校学科创新引智计划(B07050)

A New Approach to Identify Buffet Loads for Aircraft Vertical Tail

  • JIA You ,
  • YANG Zhichun
Expand
  • Institute of Structural Dynamics and Control, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2012-12-11

  Revised date: 2013-04-04

  Online published: 2013-04-25

Supported by

National Natural Science Foundation of China (11072198,11102162);"111" Project of China (B07050)

摘要

针对抖振载荷难以直接测量的问题,提出了一种由抖振加速度响应逐点识别翼面分布抖振载荷的频域方法。根据抖振载荷空间和时间的分布特性,将抖振载荷表示成一组空间正交函数与一组时间函数的线性组合,从而把频域内的抖振载荷识别问题转化为时间函数的识别问题。通过垂尾结构的气动弹性运动方程推导出加速度响应功率谱密度与广义力功率谱密度之间的关系式,再由谱分解理论得出广义力功率密度与抖振载荷功率谱密度的关系式,最后根据空间分布函数的正交性逐点识别出时间函数。为了解决上述逐点识别过程中遇到的不适定问题,提出了一种新的正则化处理方法,并用牛顿迭代法选取最佳正则化因子。对一个垂尾模型,先用计算流体力学(CFD)仿真软件计算出垂尾模型上的抖振载荷,然后将这些抖振载荷施加在垂尾结构上,并计算出垂尾结构的抖振加速度响应,利用计算出的加速度响应识别出抖振载荷,并与计算的抖振载荷进行比较,从而验证了本文所提出的抖振载荷逐点识别方法具有很好的识别精度。

本文引用格式

贾有 , 杨智春 . 一种飞机垂尾抖振载荷识别的新方法[J]. 航空学报, 2013 , 34(10) : 2333 -2340 . DOI: 10.7527/S1000-6893.2013.0214

Abstract

It is difficult to perform direct measurement of the buffet loads acting on the vertical tail of an aircraft. This paper presents a novel frequency domain approach to identify buffet loads point by point from the measured acceleration responses. Based on the statistical property of the buffet loads in the time domain and spatial domain, the buffet loads are expressed as a linear combination of orthogonal functions in the spatial domain and random functions in the time domain. The spatial function is composed of a set of orthogonal functions, and the identification of buffet loads in the frequency domain is transformed into the estimation of the time function. First, the relationship between the acceleration spectral density and the generalized exciting force spectral density is obtained from the aeroelastic motion equation of the vertical tail; then, the relationship of the exciting force spectral density and buffet loads spectral density is obtained in terms of spectral decomposition. The time function can be identified utilizing the orthogonality of the spatial functions point by point. In order to address ill-posedness, a new regularization process is introduced to guarantee the stability of identification, and the optimal regularization factor is selected by Newton’s iteration. A vertical tail model is adopted to verify the feasibility and precision of the proposed method. A set of buffet loads are simulated by a computational fluid dynamics (CFD) code, and these buffet loads are exerted on the vertical tail to calculate the corresponding buffeting acceleration responses which are used to identify the buffet loads using the proposed method. Good agreements between the calculated buffet loads and estimated buffet loads validate the present method.

参考文献

[1] Lee B H K. Statistical analysis of wing/fin buffeting response. Progress in Aerospace Sciences, 2002, 38: 305-345.

[2] Lee B H K. A method of predicting wing response to buffet loads. Journal of Aircraft, 1984, 21(1): 85-87.

[3] Zimmerman N H, Ferman M A, Yurkovich R N, et al. Prediction of tail buffet loads for design application. NADC-88043-60, 1987.

[4] Lee B H K. Vertical tail buffeting of fighter aircraft. Progress in Aerospace Sciences, 2000, 36: 193-279.

[5] Lee B H K, Tang F C. Characteristics of the surface pressures on a F/A-18 vertical fin due to buffet. Journal of Aircraft, 1994, 31(1): 228-235.

[6] Lee B H K, Tang F C. Buffet load measurements on an F/A-18 vertical fin at high-angle-of-attack. AIAA-1992-2127, 1992.

[7] Davis M C, Saltzman J A. In-flight wing pressure distributions for the NASA F/A-18A high alpha research vehicle. NASA/TP-2000-209018. Edwards, CA: NASA Dryden Flight Research Center, 2000.

[8] Burnham J K. Predicted dynamic buffet loads for limited response measurements: T-45A horizontal tail. Proceedings of the 36th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics and Materials Conference, 1995.

[9] Levinski O. Prediction of buffet loads on twin vertical tail using vortex method. DSTO-RR-0217. Aeronautical and Maritime Research Laboratory, Australian Department of Defense, 2001.

[10] Levinski O. Prediction of buffet loads on twin vertical tail using artificial neural networks. DSTO-RR-0218. Aeronautical and Maritime Research Laboratory, Australian Department of Defense, 2001.

[11] Anthony S P, Moses R W. A method to analyze tail buffet loads of aircraft. RTO AVT Symposium on Flow Induced Unsteady Loads and the Impact on Military Applications, 2005: 25-29.

[12] Clough R W, Penzien J. Dynamics of structures. Berkeley: Computers&Stuctures, Inc., 1995.

[13] Aster R C, Borchers B, Thurber C H. Parameter estimation and inverse problems. Amsterdan: Elsevier Academic Press, 2005.

[14] Tikhonov A N, Arsenin V Y. Solutions of ill-posed problems. New York: Halsted Press, 1977.

[15] Granger S, Perotin L. An inverse method for the identification of distributed random excitation acting on a vibrating structure, Part 1: theory. Mechanical Systems and Signal Processing, 1999, 13(1): 53-65.

[16] Liu J J. The regularization methods and application of ill-posed problems. Beijing: Science Press, 2005: 148-149. (in Chinese) 刘继军. 不适定问题的正则化方法及应用. 北京: 科学出版社, 2005: 148-149.

[17] Rodden W R, Johnson E H. MSC/Nastran aeroelastic analysis user's guide version 68.Sanata Ana: The MacNeal-Schwendler Corporation, 1994.

[18] Wu Q, Li B, Yang F. Study on the engineering calculation method for vertical tail buffet response. Science Technology and Engineering, 2011, 11(10): 2261-2265. (in Chinese) 吴谦, 李斌, 杨飞. 垂尾抖振响应工程计算方法研究. 科学技术与工程, 2011, 11(10): 2261-2265.

文章导航

/