民机机身段和舱内设施坠撞试验及结构适坠性评估
收稿日期: 2012-11-25
修回日期: 2013-03-21
网络出版日期: 2013-04-23
基金资助
工信部民机科研项目
Drop Test and Structure Crashworthiness Evaluation of Civil Airplane Fuselage Section with Cabin Interiors
Received date: 2012-11-25
Revised date: 2013-03-21
Online published: 2013-04-23
Supported by
CCTIME Civil Aircraft Research Project
为研究典型民机机身段和内部设施的适坠性,设计并制造了7个框距的全尺寸机身段结构,安装了典型的舱内设施,包括3排航空座椅和2套行李架,建立了机身段结构和舱内设施的撞击有限元模型,通过预试验分析,确定乘员可生存的垂直坠撞速度为7 m/s。坠撞试验中,撞击平台材料为木质,撞击平台下方放置了12个载荷传感器,乘员由15个假人模拟,其中4个假人安装了传感器,行李用配重替代。撞击载荷、结构和假人的加速响应由动态数据采集设备(DAS)测量,并与图像测量同步,给出了数据处理方法和典型的结构、假人响应曲线。通过对撞击过程中机身段结构的能量吸收过程和机理进行分析,提出了3条提高机身结构适坠性的设计思路。根据适航条例对结构适坠性的要求和人体伤害指标,提出了综合适坠性评估指数(ICI)的概念,可对民机结构适坠性进行量化评估,并根据该评估方法和试验结果,对典型机身段的结构适坠性进行了评估。评估结果表明,在给定的坠撞环境下,机身段结构的适坠性满足适航规章的要求。
刘小川 , 郭军 , 孙侠生 , 牟让科 . 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013 , 34(9) : 2130 -2140 . DOI: 10.7527/S1000-6893.2013.0182
A full-scale civil airplane fuselage section with 7 frames is designed and manufactured whose cabin section is configured with three rows of seats and two overhead bins. A finite element model of the fuselage section and cabin Interiors is developed, and a 7 m/s vertical impact condition is confirmed by two pretest analyses. The impact surface is a wooden platform instrumented with 12 load cells. The passengers are simulated by 15 dummies, of whom four are instrumented, and the passenger baggage is simulated by concentrated weights. The impact loads and acceleration responses of the structure and dummies are collected by a data acquisition systems (DAS) which is synchronized to high speed cameras. Experimental data processing methods are introduced and typical experimental curves are presented. The energy absorption process and mechanisms of the fuselage section during the impact are estimated, and three general methods of improving the fuselage structural crashworthiness are proposed. Based on the structural requirements and human injury criteria of the transport airplane airworthiness regulation, a crashworthiness evaluation method called the integrated crashworthiness index (ICI) is introduced, which can score the crashworthiness with a standard formula. The crashworthiness of the fuselage section structure is evaluated with ICI. The evaluation result show that the fuselage section structure meet the crashworthiness requirements well under the given impact environment.
[1] Huang J. Aerodynamic configuration design of future large aircraft. Aeronautical Manufacturing Technology, 2010(19): 26-29. (in Chinese) 黄俊. 未来大型客机气动布局设计. 航空制造技术, 2010(19): 26-29.
[2] CCAR—25—R3 China civil aviation regulations: 25—airworthiness standard of transport aircraft. Beijing: CAAC, 2001. (in Chinese) CCAR—25—R3 中国民用航空规章: 第25部——运输类飞机适航标准. 北京:中国民用航空总局, 2001.
[3] Jackson K E, Fasanella E L. A survey of research performed at NASA Langley Research Center's impact dynamics research facility. AIAA-2003-1896, 2003.
[4] Fasanella E L, Jackson K E. Crash simulation of a Boeing 737 fuselage section vertical drop test. Proceedings of the Third KRASH User's Conference, 2001.
[5] Byar A, Tan T M. A crashworthiness study of a Boeing 737 fuselage section. Philadelphia, PA: Drexel University, 2003.
[6] Fasanella E L, Jackson K E. Best practices for crash modeling and simulation. NASA/TM-2002-211944, ARL-TR-2849, 2002.
[7] Kumakura I, Terada H. Research plan at NAL on drop test of fuselage structure of YS-11A turbo-prop transport aircraft. The 3rd International Aircraft Fire and Cabin Safety Research Conference, 2001.
[8] Deletombe E, Delsart D, Fabis J, et al. Recent development in modeling and experimental fields with respect to crashworthiness and impact on aerospace structures. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), 2004.
[9] Liu X C, Zhou S F, Sun X S, et al. Energy absorption optimization of civil airplane sub-floor structure. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(11): 1968-1972. (in Chinese) 刘小川, 周苏枫, 孙侠生, 等. 民用飞机客舱地板下部结构吸能优化. 机械科学与技术, 2011, 30(11): 1968-1972.
[10] Liu X C, Zhou S F, Ma J F, et al. Correlation study of crash analysis and test of civil airplane sun-floor energy absorption structure. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2202-2210. (in Chinese) 刘小川, 周苏枫, 马君峰, 等. 民机客舱地板下部吸能结构分析与试验相关性研究. 航空学报, 2012, 33(12): 2202-2210.
[11] Ren Y R, Xiang J W, Luo Z P, et al. Effect of cabin floor oblique strut on crashworthiness of typical civil aircraft fuselage section. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 271-276. (in Chinese) 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响. 航空学报, 2010, 31(2): 271-276.
[12] Zheng J Q, Xiang J W, Luo Z P, et al. Crashworthiness layout of civil aircraft using waved-plate for energy absorption. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1396-1402. (in Chinese) 郑建强, 向锦武, 罗漳平, 等. 民机机身段耐撞性设计的波纹板布局. 航空学报, 2010, 31(7): 1396-1402.
[13] Ren Y R, Xiang J W, Luo Z P, et al. Crashworthiness optimization of civil aircraft subfloor structure. Acta Aeronautica et Astronautica Sinica, 2011, 32(4): 640-649. (in Chinese) 任毅如, 向锦武, 罗漳平, 等. 民机机身下部结构耐撞性优化设计. 航空学报, 2011, 32(4): 640-649.
[14] Zhu X D, Zhu G R. Crashworthiness simulation of civil aircraft fuselage section. Journal of Vibration Engineering, 2008, 21(S): 28-30. (in Chinese) 朱晓东, 朱广荣. 民机典型机身舱段结构坠撞有限元数值仿真研究. 振动工程学报, 2008, 21(S): 28-30.
[15] Hao P, Feng Z Y, Zou T C. Research development of crashworthiness certification technology on transport category aircraft.Aeronautical Science&Technology, 2011(5): 49-51. (in Chinese) 郝鹏, 冯振宇, 邹田春. 运输类飞机适坠性审定技术研究进展. 航空科学技术, 2011(5): 49-51.
[16] SAE J211-1 Instrumentation for impact test—Part 1, electronic instrumentation. Warrendale, PA: SAE International, 2007.
[17] AC 25.562-1B Dynamic evaluation of seat restraint systems & occupant protection on transport airplanes. Washington, D.C.: Federal Aviation Administration, U.S. Department of Transportation, 2006.
[18] AC25-17 Transport airplane cabin interiors crashworthiness handbook. Washington, D.C.: Federal Aviation Administration, U.S. Department of Transportation, 2009.
/
〈 | 〉 |