流体力学与飞行力学

基于CFD/CSD时域耦合方法的多通道叶栅颤振分析

  • 全金楼 ,
  • 张伟伟 ,
  • 苏丹 ,
  • 叶正寅
展开
  • 西北工业大学 翼型叶栅空气动力学国家重点实验室, 陕西 西安 710072
全金楼 男, 硕士研究生。主要研究方向: 叶轮机气动弹性力学。E-mail:quanjinlou@126.com;张伟伟 男, 博士, 副教授, 博士生导师。主要研究方向: 流固耦合力学与控制。Tel: 029-88491342 E-mail: aeroelastic@nwpu.edu.cn

收稿日期: 2012-10-23

  修回日期: 2013-03-18

  网络出版日期: 2013-04-11

基金资助

国家自然科学基金(11172237,10802063);航空科学基金(2009ZA53009)

Flutter Analysis of Turbomachinery Cascades Based on Coupled CFD/CSD Method

  • QUAN Jinlou ,
  • ZHANG Weiwei ,
  • SU Dan ,
  • YE Zhengyin
Expand
  • National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2012-10-23

  Revised date: 2013-03-18

  Online published: 2013-04-11

Supported by

National Natural Science Foundation of China (11172237,10802063);Aeronautical Science Foundation of China (2009ZA53009)

摘要

为了对叶轮机多通道叶栅颤振进行研究分析,基于时域计算流体力学(CFD)方法,耦合简化的结构动力学方程,运用杂交的线性多步方法实现了对多通道叶栅的时域耦合颤振仿真。该耦合方法通过分析叶片的动力响应特性,获得叶栅的气动弹性稳定性特征。以标准叶栅颤振模型——STCF4(Standard Test Configuration 4)为算例,计算结果表明该耦合方法与经典非耦合方法在对失稳区域的预测结果吻合得很好,证实了该耦合方法的正确性。运用该耦合方法计算了不同通道数下的自由响应,对比发现真实的叶轮机颤振与外流机翼颤振失稳的不同之处在于叶轮机叶排颤振失稳在很大程度上是一个多模态同时失稳问题;且由于出现不稳定的分支频率和阻尼都接近,叶片的时域响应会出现典型的葫芦节型发散。

本文引用格式

全金楼 , 张伟伟 , 苏丹 , 叶正寅 . 基于CFD/CSD时域耦合方法的多通道叶栅颤振分析[J]. 航空学报, 2013 , 34(9) : 2019 -2028 . DOI: 10.7527/S1000-6893.2013.0176

Abstract

The paper presents a coupled method that combines a computational fluid dynamics (CFD) solver with a simplified structural motion equation in the time domain, and makes use of a hybrid multi-step scheme to investigate multi-passage cascade coupled flutter for turbomachinery. The method obtains the aeroelastic stability characteristics of the cascade by analyzing the dynamic responses of the blades. The aeroelastic characteristics of STCF-4 (Standard Test Configuration 4) are calculated with this method. The result for forecasting the instability district agrees well with that of the traditional uncoupled method, thus validating the coupled method. The method is applied to compute the free responses of cascades of different passages, and it is found that the turbomachinery flutter is different from wing flutter. Turbomachinery flutter is in many cases multimodal instability, and because the frequencies and damping coefficients of the instability mode are very close to each other, the time domain responses of the blades will typically show divergence in a gourd style.

参考文献

[1] Zhou S. Turbomachinery aeroelasticity introduction. Beijing: National Defense Industry Press, 1989: 1-11. (in Chinese) 周盛. 叶轮机气动弹性力学引论. 北京: 国防工业出版社, 1989: 1-11.

[2] Fleeter S. Aeroelasticity research for turbomachine applications. Journal of Aircraft, 1979, 16(5): 320-326.

[3] Mikolajczak A A, Arnoldi R A, Snyder L E, et al. Advances in fan and compressor blade flutter analysis and predictions. Journal of Aircraft, 1975, 12(4): 325-332.

[4] Lane F. System mode shapes in the flutter of compressor blade rows. Journal of the Aeronautical Sciences, 1956, 23: 54-66.

[5] Carta F O. Coupled blade-disc-shroud flutter instabilities in turbojet engine rotors. Journal of Engineering for Power, 1967, 89(3): 419-426.

[6] Erdos J I, Alzner E. Numerical solution of periodic transonic flow through a fan stage. NASA CR-2900, 1978.

[7] Srivastava R, Bakhle M A, Keith T G, et al. Aeroelastic analysis of turbomachinery. part I-phase lagged boundary condition methods. International Journal of Numerical Methods for Head & Fluid Flow, 2004, 14(3): 366-381.

[8] Srivastava R, Bakhle M A, Keith T G, et al. Aeroelastic analysis of turbomachinery. part II-stability computations. International Journal of Numerical Methods for Head & Fluid Flow, 2004, 14(3): 382-402.

[9] Gnesin V, Rzadkowski R. A coupled fluid-structure analysis for 3d inviscid flutter of IV standard configuration. Journal of Sound and Vibration, 2002, 251(2): 315-327.

[10] Sadeghi M, Liu F. Computation of cascade flutter by uncoupled and coupled methods. International Journal of Computational Fluid Dynamics, 2005, 19(8): 559-569.

[11] Kubo A, Namba M. Analysis of interrow coupling flutter of multistage blade row. AIAA Journal 2011, 49(11): 2357-2366.

[12] Zhang C A, Zhang W W, Ye Z Y, et al. An efficient method on aerodynamic damping coefficient calculation for turbomachinery. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 826-833. (in Chinese) 张陈安, 张伟伟, 叶正寅, 等. 一种高效的叶轮机叶片气动阻尼计算方法. 力学学报, 2011, 43(5): 826-833.

[13] Debrabandere F, Tartinville B, Hirsch C H, et al. Fluid-structure interaction using a modal approach. ASME Paper, 2011-GT-45692, 2011.

[14] Sadeghi M, Liu F. Investigation of non-linear flutter by a coupled aerodynamics and structural dynamics method. AIAA-2001-573, 2001.

[15] Sadeghi M, Liu F. Investigation of mistuning effects on cascade flutter using a coupled method. Journal of Propulsion and Power, 2007, 23(2): 266-272.

[16] Hu Y C, Zhou X H. Numerical analysis of vibrating cascade unsteady aerodynamic and its application.Chinese Journal of Applied Mechanics, 2004, 21(3): 49-52.(in Chinese) 胡运聪, 周新海. 振动叶栅非定常气动力的数值分析及应用. 应用力学学报, 2004, 21(3): 49-52.

[17] Yang Q Z, Xiao J, Zhou X H. Cascade flutter investigation base on flow-structure coupling unsteady flow.Journal of Propulsion Technology, 2005, 26(6): 526-530.(in Chinese) 杨青真, 肖军, 周新海. 基于气/固耦合非定常流动的叶栅颤振分析. 推进技术, 2005, 26(6): 526-530.

[18] Jiang Y W, Zhang W W, Ye Z Y. Study of time-marching method for fluid/structure coupling solution based on CFD technique. Journal of Vibration Engineering, 2007, 20(4): 396-400. (in Chinese) 蒋跃文, 张伟伟, 叶正寅.基于CFD技术的流场/结构时域耦合求解方法研究.振动工程学报,2007,20(4):396-400.

[19] Bölcs A, Fransson T H. Aeroelasticity in turbomachines—comparison of theoretical and experimental cascade results. Lausanne, Switzerland: EPFL, 1986: 131-164.

[20] Su D, Zhang W W, Zhang C A, et al. An unsteady aerodynamic modeling for turbomachinery based on system identification. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 242-248.(in Chinese) 苏丹, 张伟伟, 张陈安, 等. 基于系统辨识技术的叶轮机非定常气动力建模方法.航空学报, 2012, 33(2): 242-248.

文章导航

/