翼型加装格尼襟翼的高亚声速气动特性研究
收稿日期: 2012-11-19
修回日期: 2013-03-14
网络出版日期: 2013-04-08
基金资助
国家"863"计划(2011AA7052002);江苏省研究生培养创新工程(CX10B_104Z);江苏高校优势学科建设工程资助项目
Study on Aerodynamic Characteristics of Airfoil with Gurney Flaps Under High Subsonic Flow
Received date: 2012-11-19
Revised date: 2013-03-14
Online published: 2013-04-08
Supported by
National High-tech Research and Development Program of China (2011AA7052002);Funding of Jiangsu Innovation Program for Graduate Education (CX10B_104Z);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
为研究高亚声速下格尼襟翼(GF)对翼型气动性能的影响,采用数值计算方法研究了NACA 8-H-12翼型加装不同高度格尼襟翼后的气动特性。数值计算以雷诺平均Navier-Stokes(RANS)方程作为控制方程,采用有限体积法进行离散,通量计算采用Roe通量差分分裂格式,湍流模型为剪切应力输运(SST) k-ω两方程模型。格尼襟翼高度分别为1%、2%和5%弦长高度,垂直于翼型弦线安装,安装位置分别位于后缘和距后缘5%弦长处。计算结果表明:在马赫数Ma=0.8时,格尼襟翼后方形成了双涡结构,该结构对翼型绕流的加速作用增大了翼型的环量,从而使翼型升力系数显著增大;小迎角下襟翼对上表面激波位置的后移作用也有利于翼型增升。关于不同襟翼安装位置的研究表明,襟翼安装于后缘能够带来更大的升阻比增量。在0°~12°迎角范围内,1%、2%和5%弦长高度的格尼襟翼均能够提高翼型在相同升力系数下的升阻比,但较高的格尼襟翼使翼型力矩系数显著增大,因此对于实际工程应用,需选择适当的襟翼高度以避免由于翼型低头力矩过大造成不利影响。
崔钊 , 韩东 , 李建波 . 翼型加装格尼襟翼的高亚声速气动特性研究[J]. 航空学报, 2013 , 34(10) : 2277 -2286 . DOI: 10.7527/S1000-6893.2013.0169
In order to investigate the performance of airfoils equipped with Gurney flaps (GF) under high subsonic flow, the aerodynamic characteristics of airfoil NACA 8-H-12 with Gurney flaps of different heights are calculated by means of a numerical method. The Reynolds average Navier-Stokes (RANS) equations are chosen as the governing equations in numerical calculation, with the application of the finite volume method for discretization. The Roe flux difference splitting scheme is employed to calculate the flux. Turbulence model is shear stress transition (SST) k-ω two equations model. The heights of the Gurney flaps are 1%, 2% and 5% chord length respectively, mounted perpendicular to the chordline of the airfoil at the trailing edge and 5% chord ahead of the trailing edge. The results show that a double vortex structure is formed behind the Gurney flap when the Mach number is 0.8. Because of the acceleration of the flow around the airfoil, the airfoil circulation is increased by this structure, and therefore the lift coefficient increases significantly. The shock wave position is postponed at a lower angle of attack, and this phenomenon is beneficial to lift enhancement. An equipment location comparison shows that the Gurney flap equipped at the airfoil trailing edge improves the lift-drag ratio most significantly. Gurney flaps of 1%, 2% and 5% chord height are all able to improve the lift-drag ratio at the same given lift coefficient, but higher Gurney flap makes the airfoil moment coefficient increase significantly. So for practical application, the height of the Gurney flaps must be limited to avoid the adverse effects caused by excessive nose-down moment.
[1] Liebeck R H. Design of subsonic airfoils for high lift. Journal of Aircraft, 1978, 15(9): 547-561.
[2] Neuhart D H, Pendergraft O C. A water tunnel study of Gurney flaps. NASA TM 4071, 1988.
[3] Storms B L, Jang C S. Lift enhancement of an airfoil using a Gurney flap and vortex generators. Journal of Aircraft, 1994, 31(3): 542-547.
[4] Jang C S, Ross J C, Cummings R M. Computational evaluation of an airfoil with a Gurney flap. AIAA-1992-2708, 1992.
[5] Myose R, Heron I, Papadakis M. The effect of Gurney flaps on a NACA 0011 airfoil. AIAA-1996-59, 1996.
[6] Myose R, Heron I, Papadakis M. The post-stall effect of Gurney flaps on a NACA 0011 airfoil. SAE Technical Paper 961316, 1996.
[7] Lee H T, Kroo I M. Computational investigation of wings with miniature trailing edge control surfaces. AIAA-2004-2693, 2004.
[8] Li Y C, Wang J J. Experimental investigation of Gurney flaps on the lift enhancement of a delta wing. Acta Aerodynamica Sinica, 2002, 20(4): 388-393. (in Chinese) 李亚臣, 王晋军. 三角翼Gurney襟翼增升实验研究. 空气动力学报, 2002, 20(4): 388-393.
[9] Gao Y W. Method using Gurney flap to increase flux of an axial fan. Fluid Machinery, 2004, 32(1): 18-20. (in Chinese) 高永卫. Gurney襟翼在车辆冷却风扇设计中的应用研究. 流体机械, 2004, 32(1): 18-20.
[10] Shen Z H, Yu G L. Experimental investigation of effect of Gurney flap on performance of horizontal-axis wind turbine. Acta Energiae Solaris Sinica, 2007, 28(2): 196-199. (in Chinese) 申振华, 于国亮. Gurney襟翼对水平轴风力机性能影响的实验研究. 太阳能学报, 2007, 28(2): 196-199.
[11] Min B Y, Sankar L N, Rajmohan N. Computational investigation of the effects of Gurney flap on forward flight characteristics of helicopter rotors. Journal of Aircraft, 2009, 46(6): 1957-1964.
[12] Yeo H. Assessment of active controls for rotor performance enhancement. Journal of the American Helicopter Society, 2008, 53(2): 152-163.
[13] Bae S, Gandhi F, Maughmer M. Optimally scheduled deployment of Gurney flaps for rotorcraft power reduction. Proceedings of the 65th Annual Forum of the American Helicopter Society, 2009: 187-211.
[14] Kinzel M, Maughmer M, Lesieutre G. Miniature trailing-edge effectors for rotorcraft performance enhancements. Journal of the American Helicopter Society, 2007, 52(2):146-158.
[15] Thiel M. Actuation of an active Gurney flap for rotorcraft applications. University Park: The Pennsylvania State University, 2006.
[16] Li Y C, Wang J J, Fan J C, et al. Experiment investigation into effects of Gurney flaps on supercritical airfoil. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(6): 471-474. (in Chinese) 李亚臣, 王晋军, 樊建超, 等. 超临界翼型Gurney襟翼增升试验研究. 北京航空航天大学学报, 2003, 29(6): 471-474.
[17] Zhou H. Numerical analysis of effect of mini-TED on aerodynamic characteristics of airfoils in transonic flow. Acta Aeronautica et Astronuatica Sinica, 2009, 30(8): 1367-1373. (in Chinese) 周华. Mini-TED改变翼型跨声速性能的数值分析. 航空学报, 2009, 30(8): 1367-1373.
[18] Stivers L S, Rice F J. Aerodynamic characteristics of four NACA airfoil sections designed for helicopter rotor blades.NACA RB No.l5k02, 1946.
[19] Schaefer R, Smith H. Aerodynamic characteristics of the NACA 8-H-12 airfoil section at six Reynolds numbers from 1.8×106 to 11.0×106. NACA TN 1998, 1998.
[20] Menter F. Two-equation eddy viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605.
[21] Cook P H, McDonald M A, Firmin M C P. Aerofoil RAE 2822-pressure distributions and boundary layer and wake measurements. AGARD Report AR 138, 1979: A6.
/
〈 | 〉 |