多因素耦合复杂飞行情形风险定量评估方法
收稿日期: 2012-06-18
修回日期: 2012-11-28
网络出版日期: 2013-03-29
基金资助
国家自然科学基金(60572172,61074007)
Quantitative Risk Evaluation Methods for Multi-factor Coupling Complex Flight Situations
Received date: 2012-06-18
Revised date: 2012-11-28
Online published: 2013-03-29
Supported by
National Natural Science Foundation of China (60572172, 61074007) *Corresponding author. Tel.: 029-84787637 E-mail: xuhaojun@xjtu.edu.cn
多不利因素耦合诱发飞行事故具有隐蔽性强、因素关联复杂及状态"不可逆"性等特点,对其进行定量建模及风险评估研究难度较大。为此建立了典型装备故障和恶劣环境两类不利因素的定量数学模型。基于飞机六自由度全量运动方程、不利因素数学模型和人在环的操纵方式,应用MATLAB/Simulink、C语言和Flightgear软件开发了用于多因素耦合飞行情形研究的虚拟试飞安全性分析系统。建立了基于改进粒子群算法的极值分布风险评估模型,通过广义极值分布参数优化自动找到最为符合的极值分布模型。提出了随机自适应进化粒子群优化算法(RAE-PSO)对拟合过程进行优化,提高了评估精度和收敛速度。建立了多因素耦合复杂飞行情形的综合评估模型,以GJB 626A-2006中的试飞风险科目为例进行风险评估与结果分析,验证了方法的可行性和有效性。
刘东亮 , 徐浩军 , 张久星 . 多因素耦合复杂飞行情形风险定量评估方法[J]. 航空学报, 2013 , 34(3) : 509 -516 . DOI: 10.7527/S1000-6893.2013.0086
In multi-factor complex flight situations, factors' coupling is secluded, complex and always has the characteristic of irreversibility. Thus, it is difficult to research the modeling and risk evaluation of such flight situations. Representative disadvantage factors' models including aircraft malfunction and atrocious weather are established. Based on the six-DOF non-linear differential equations of aircraft motion, models of disadvantage factors and pilot-in-loop manipulation, a virtual flight testing system for multi-factor flight situation research is developed using MATLAB/Simulink, C language and Flightgear software. Generalized extreme value risk evaluation model based on an improved particle swarm pptimization algorithm is proposed. The most appropriate type of extremum distribution can be found by this model. A random adaptive evolutionary particle swarm optimization (RAE-PSO) is proposed to optimize the fitting process, and the precision and constringency speed are improved. An integrated risk evaluation model for multi-factor coupled complex flight situations is put forward. And a flight test subject in GJB 626A-2006 is used as an example to validate the method's feasibility and validity.
[1] Scharl J, Mavris D N, Burdun I Y. Use of flight simulation in early design: formulation and application of the virtual testing and evaluation methodology. AIAA-2000-5590, 2000.
[2] Burdun I Y, DeLaurentis D A, Mavris D N. Modeling and simulation of airworthiness requirements for an HSCT prototype in early design. AIAA-1998-4936, 1998.
[3] Mavris D N, Biltgen P T, Weston N R. Advanced design of complex systems using the collaborative visualization environment (CoVE). AIAA-2005-126, 2005.
[4] Belcastro C M, Belcastro C M. On the validation of safety critical aircraft systems, partⅠ: analytical & simulation methods. AIAA-2003-5559, 2003.
[5] Li X L, Zhao T D. A multi-factor coupling event chain model based on petri nets. Reliability, Maintainability and Safety, 2009:466-469.
[6] Feng Y W, Xuan J L, Guo Z G, et al. The algorithm of the disastous accident caused by a series of accidental factors. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):146-150. (in Chinese) 冯蕴雯, 宣建林, 国志刚, 等.飞行器多因素突发性灾难事故的预防及其算法. 航空学报, 2007, 28(1): 146-150.
[7] Imagine S A. AMESim 4.2 technical bulletins: standard fluid propeties.2002: 1-30.
[8] Li Y T, Lei B F. Modeling and simulation of hydraulic system. Beijing: Metallurgical Indusry Press, 2003: 70-160. (in Chinese) 李永堂, 雷步芳. 液压系统建模与仿真. 北京: 冶金工业出版社, 2003: 70-160.
[9] Xu H J, Liu D L, Meng J, et al.Flight safety evaluation methods based on system simulation. Beijing: National Defense Indusry Press, 2011: 179-199. (in Chinese) 徐浩军, 刘东亮, 孟捷, 等. 基于系统仿真的飞行安全评估方法. 北京: 国防工业出版社, 2011: 179-199.
[10] Bragg M B, Hutchison T, Merret J, et al. Effect of ice accretion on aircraft flight dynamics, AIAA-2000-360, 2000.
[11] Deutsch S, Pew R. Modeling human error in a real-world team work environment. Proceedings of the 24th annual meeting of the cognitive science society, 2002: 274-279.
[12] Ge Z H, Xu H J, Meng J. Research on pilot model random and numerical simulation. Journal of System Simulation, 2007, 19(2): 453-455.
[13] Songchitruksa P, Tarko A P. The extreme value theory approach to safety estimation. Accident Analysis and Prevention, 2006, 38(4): 811-822.
[14] Xu H J, Liu D L, Xue Y, et al. Airworthiness compliance verification method based on simulation of complex system.Chinese Journal of Aeronautics, 2012,25(5): 681-690.
[15] Fisher R A, Tippet L H C. Limiting forms of the freguency dlistribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 1928, 24(2): 163-190.
[16] Orjubin G. Maximum field inside a reverberation chamber modeled by the generalized extreme value distribution. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(1): 104-113.
[17] Srinivas M, Patnaik L M. Adaptive probabilties of crossover and mutationin genetic algorithm. IEEE Transactions on SMC, 1994, 24(4): 656-667.
[18] Shi Y, Eberhart R. A modified particle swarm optimizer. Proceedings of the IEEE Conference on Evolutionary Computation, Singapore, 1998.USA: IEEE, 1998: 69-73.
[19] Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers & Operations Research, 2006, 33(3): 859-871.
/
〈 | 〉 |