流体力学与飞行力学

低速风洞动态试验的高速并联机构设计及动力学分析

  • 谢志江 ,
  • 孙小勇 ,
  • 孙海生 ,
  • 张钧
展开
  • 1. 重庆大学 机械传动国家重点实验室, 重庆 400044;
    2. 中国空气动力研究与发展中心, 四川 绵阳 621000
谢志江 男, 教授, 博士生导师。主要研究方向: 机械创新设计、 机电一体化及设备故障诊断等。 Tel: 023-65105379 E-mail: xzj99@vip.sina.com;孙小勇 男, 博士研究生。主要研究方向: 并联机构设计、 动力学分析。 E-mail: sunyong8435@sina.com

收稿日期: 2012-03-13

  修回日期: 2012-07-16

  网络出版日期: 2013-03-29

基金资助

国防基础科研项目(JW20

Mechanism Design and Dynamics Analysis of High Speed Parallel Robot for Dynamic Test in Low Speed Wind Tunnel

  • XIE Zhijiang ,
  • SUN Xiaoyong ,
  • SUN Haisheng ,
  • ZHANG Jun
Expand
  • 1. National Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China;
    2. China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2012-03-13

  Revised date: 2012-07-16

  Online published: 2013-03-29

Supported by

Defense Industrial Technology Development Program (JW20*2009035)

摘要

为模拟飞行器多自由度(DOF)风洞试验,设计并制造了一种用于低速风洞试验的高速并联六自由度机构,综合分析需求和机构的约束条件,确定机构的结构参数,并分析和总结了该机构的特点。使用ANSYS软件计算系统的固有频率,得到系统极限位置的振动响应。利用ADAMS软件对机构进行柔性动力学仿真,模拟机构在高速运动时紧急制动的动力特征,比较分析刚性和柔性制动的冲击载荷,总结出机构高速制动的特点,所分析结果在机构的设计和实际应用中具有重要的意义。实际运行表明:并联机构可实现单自由度和多自由度耦合运动,具有大工作空间(振幅可达30°/500 mm)、高运动精度(达0.05°/0.5 mm)和高速(达5 m/s)等特点,并具有较高的运动性能,满足风洞试验要求。

本文引用格式

谢志江 , 孙小勇 , 孙海生 , 张钧 . 低速风洞动态试验的高速并联机构设计及动力学分析[J]. 航空学报, 2013 , 34(3) : 487 -494 . DOI: 10.7527/S1000-6893.2013.0084

Abstract

In order to simulate the multiple degrees of freedom (DOF) wind tunnel test of an aircraft, a high speed 6-DOF parallel mechanism for low speed wind tunnel tests is designed. The structural parameters of the mechanism are given by a comprehensive analysis of its requirements and restrictions. The characteristics of the parallel mechanism are analyzed. The vibration responses at the limit positions of the system are calculated by ANSYS software. At the same time, a flexible dynamic simulation for high speed emergency braking is analyzed by ADAMS tool; the characteristics of high speed braking are summerized based on a comparative analysis of the rigid and flexible brake loads. The simulation results prove that this study is important for the design of the prototype of a parallel mechanism and its application. The experiment shows that the parallel mechanism can fulfill both single degree and multi degree oscillatory motions; it also has a large work space (up to 30°/500 mm), high motion accuracy (up to 0.05°/0.5 mm) and high speed (up to 5 m/s). In conclusion, the high speed 6-DOF parallel mechanism has high motion capability to meet the wind tunnel test requirements.

参考文献

[1] Chen Z H, Chen W H. Structure design and finite element analysis of the high angle of attack mechanism in 2.4 m wind tunnel. Journal of Experiments in Fluid Mechanics, 2008, 22(4): 84-88. (in Chinese) 陈振华, 陈万华. 2.4 m风洞大迎角机构结构设计与有限元分析. 实验流体力学, 2008, 22(4): 84-88.

[2] Sun H S, Zhang H, Tang G S, et al. The development of high angle of attack test equipment in the 8 m×6 m low speed wind tunnel. Journal of Experiments in Fluid Mechanics, 2009, 23(1): 70-73. (in Chinese) 孙海生, 张晖, 汤更生, 等. 8 m×6 m风洞特大迎角试验设备研制. 实验流体力学, 2009, 23(1): 70-73.

[3] Kawamura S, Kino H, Won C. High speed manipulation by using parallel wire driven robots. Robotica, 2000, 40 (2): 13-21.

[4] Zheng Y Q, Lin Q, Liu X W. Design methodology of wire-driven parallel support systems in the low speed wind tunnels and attitude control scheme of the scale model. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 774-778. (in Chinese) 郑亚青, 林麒, 刘雄伟. 低速风洞绳牵引并联支撑系统的机构与模型姿态控制方案设计. 航空学报, 2005, 26(6): 774-778.

[5] DNW German-Dutch Wind Tunnels. Annual Report 2004. URL:http://www.dnw.aero.

[6] Huebner A R. Experimental and numerical investigations of unsteady aerodynamic derivatives for transport aircraft configurations. AIAA-2007-1076, 2007.

[7] Loeser T, Bergmann A. Capabilities of deployment tests at DNW-NWB. RTO-AVT-133, 2006: 13-1-13-11.

[8] Bergmann A, Huebne A, Loeser T. Experimental and numerical research on the aerodynamics of unsteady moving aircraft. Aerospace Sciences, 2008, 44(2): 121-137.

[9] Xiao Y W, Lin Q, Zheng Y Q, et al. Model aerodynamic tests with a wire-driven parallel suspension system in low-speed wind tunnel. Chinese Journal of Aeronautics, 2010, 23(4), 393-400.

[10] Staicu S. Inverse dynamics of the 3-PRR planar parallel robot. Robotics and Autonomous Systems, 2009, 57(5): 556-563.

[11] Huang Q, Zheng Y Q, Lin Q. Dynamic analysis for single-DOF oscillation of vehicle model in a 6-DOF wire-dri-ven parallel manipulator. Engineering Mechanics, 2010, 27(10): 230-234. (in Chinese) 黄琴, 郑亚青, 林麒. 6自由度绳牵引并联机构飞行器模型单自由度振荡运动的动力学分析. 工程力学, 2010, 27(10): 230-234.

[12] Shabana A A. Dynamics of multibody systems. New York: Cambridge University Press, 2005: 51-67.

[13] Zhang Y D, Wang Y T, Wang M N, et al. Co-simulation of flexible body based on ANSYS and ADAMS. Journal of System Simulation, 2008, 20(17): 4501-4504. (in Chinese) 张永德, 汪洋涛, 王沫楠, 等. 基于ANSYS 与ADAMS 的柔性体联合仿真. 系统仿真学报, 2008, 20(17): 4501-4504.

[14] Piras G, Cleghorn W L, Mills James K. Dynamic finite element analysis of a planar high speed, high precision parallel manipulator with flexible links. Mechanism and Machine Theory, 2005, 40(7): 849-862.

[15] Nie X T, Guo L D, Liu B L. Dynamics simulation and analysis of flexible nozzle in wind tunnel based on ADAMS. Journal of Experiments in Fluid Mechanics, 2011, 25(2): 73-76. (in Chinese) 聂旭涛, 郭隆德, 刘伯林. 基于ADAMS风洞柔壁喷管动力学仿真分析. 实验流体力学, 2011, 25(2): 73-76.

文章导航

/