大气压空气纳秒脉冲等离子体气动激励特性数值模拟与实验验证
收稿日期: 2013-01-17
修回日期: 2013-03-12
网络出版日期: 2013-03-21
基金资助
国家自然科学基金(50906100,51007095);高等学校全国优秀博士学位论文专项资金资助项目(201172)
Numerical Simulation and Experimental Validation of Pulsed Nanosecond Plasma Aerodynamic Actuation in Air Under Atmospheric Pressure
Received date: 2013-01-17
Revised date: 2013-03-12
Online published: 2013-03-21
Supported by
National Natural Science Foundation of China (50906100,51007095);High School National Foundation for Excellent Doctorial Dissertation (201172)
从机理出发,建立了考虑15种粒子和42个反应的二维等离子物理-化学模型,采用3段变步长方法,计算了纳秒时间尺度上等离子体放电特性与微秒、毫秒和秒时间尺度上流场的温度、压力与速度响应,并利用伏安特性、综合成像高速摄像机(ICCD)与粒子成像测速(PIV)实验对模型进行验证。结果表明:纳秒脉冲等离子体放电可以形成速率高达1.8×1010 K/s的局部快速温升,热源最强位置在上极板后端点;局部能量快速注入可引发压力场强扰动,形成以上极板后端点位置为中心且呈不均匀分布的压缩波和紧随其后的膨胀波,强压力扰动波形成初始阶段以当地声速快速传播,但很快即衰减为弱扰动波;压力扰动后的局部高温诱导局部流场形成涡结构,涡内流体平均速度为0.3 m/s。仿真和实验结果均显示,施加重频纳秒脉冲激励时,局部诱导涡与宏观热对流效果相叠加,使流体响应呈先垂直向上、再稳定斜向右上射流的规律。
朱益飞 , 吴云 , 崔巍 , 李应红 , 贾敏 . 大气压空气纳秒脉冲等离子体气动激励特性数值模拟与实验验证[J]. 航空学报, 2013 , 34(9) : 2081 -2091 . DOI: 10.7527/S1000-6893.2013.0164
This paper presents a plasma kinetic model considering 15 species and 42 reactions. Discharge characteristics in timescale of ns and fluid response in μs, ms and s are investigated using a timestep adjusting technique. The results agree with voltage-current characteristics, intensified charge-coupled device (ICCD) and particle image velocimetry (PIV) experiments. Simulation results show that nanosecond discharge will lead to a rise of temperature at the rate of 1.8×1010 K/s, with the hottest heating spot located at the back end of the upper electrode. The fast heating effect will result in a strong pressure perturbation and form an asymmetric perturbation wave spreading at the speed of sound. The strong wave will soon decay into a weak perturbation. The high temperature resulting from the pressure perturbation wave will induce vortexes in the local flow field with the highest velocity of 0.3 m/s in the vortexes. With repetitive nanosecond actuation being applied, the fluid will flow vertically first and then form a stable jet pointing to the top right direction due to the coupling effect of heating convection and induced vortexes, which is validated by experiments.
[1] Corke T C, Enloe C L, Wilkinson S P. Dielectric barrier discharge plasma actuators for flow control. Annual Review of Fluid Mechanics, 2010, 42: 505-529.
[2] Dong B, Bauchire J M, Magnier P. Experimental study of a DBD surface discharge for the active control of subsonic airflow. Journal of Physics D: Applied Physics, 2008, 41(15): 155201-155207.
[3] Starikovskii A Y, Nikipelov A A, Nudnova M M, et al. SDBD plasma actuator with nanosecond pulse-periodic discharge. Plasma Sources Science and Technology, 2009, 18 (3): 034015-034020.
[4] Li Y H, Wu Y, Liang H, et al. Theory of enhancing the inhibition of flow separation with plasma shock flow control. Chinese Science Bulletin, 2010, 55(31): 3060-3068.(in Chinese) 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理. 科学通报, 2010, 55(31): 3060-3068.
[5] Liang H. Investigation of plasma flow control on airfoil. Xi'an: Aeronautics and Astronautics Engineering College, Air Force Engineering University, 2009.(in Chinese) 梁华. 翼型等离子体流动控制研究. 西安: 空军工程大学航空航天工程学院, 2009.
[6] Kossyi I A, Kostinsky A Y, Matveyev A A, et al. Kinetic scheme of the nonequilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science and Technology, 1992, 1(3): 207-220.
[7] Flitti A, Pancheshnyi S. Gas heating in fast pulsed discharges in N2-O2 mixtures. European Physical Journal Applied Physics, 2009, 45(2): 21001-21013.
[8] Poggie J, Bisek N J. Numerical simulation of nanosecond-pulse electrical discharges. 50th AIAA Aerospace Sciences Meeting, 2012: 1025.
[9] Unfer T, Boeuf J P. Modelling of a nanosecond surface discharge actutator. Journal of Physics D: Applied Physics, 2009, 42(19): 194017-194022.
[10] Likhanskii A V, Shneider M N. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses. Physics of Plasmas, 2007, 14(7): 073501-073508.
[11] Che X K, Shao T, Nie W S, et al. Numerical simulation on a nanosecond-pulse surface dielectric barrier discharge actuator in near space. Journal of Physics D: Applied Physics, 2012, 45(14): 145201-145208.
[12] Hagelaar G J, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology, 2005, 14(4): 722-733.
[13] Viehland L A, Mason E A. Transport properties of gaseous ions over a wide enerage range, IV. Atomic Data and Nuclear Data Tables, 1995, 60(1): 37-95.
[14] Bird R B. Transport phenomena. New York: Wiley, 2002.
[15] Wu Y, Li Y H, Jia M, et al. Experimental investigation of nanosecond discharge plasma aerodynamic actutation. Chinese Physics B, 2012, 21(4): 045202-045207.
[16] Popov N A. Investigation of the mechanism for rapid heating of nitrogen and air in gas discharges. Low-Temperature Plasma, 2001, 27(10): 940-950.
[17] Paris P, Aints M, Valk F, et al. Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas. Journal of Physics D: Applied Physics, 2005, 38(21): 3894-3903.
[18] Paris P, Aints M, Valk F, et al. Measurement of intensity ratio of nitrogen bands as a function of field strength. Journal of Physics D: Applied Physics, 2004, 37(8): 1179-1184.
[19] Takashima K, Zuzeek Y, Lempert W R, et al. Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses. Plasma Sources Science and Technology, 2011, 20(5): 055009-055013.
/
〈 | 〉 |