固体力学与飞行器总体设计

无限大板圆孔边双裂纹的裂纹面位移权函数解

  • 童第华 ,
  • 吴学仁
展开
  • 中国航空工业集团公司 北京航空材料研究院, 北京 100095
童第华 男, 博士研究生。主要研究方向: 疲劳与断裂力学。 Tel: 010-62496725 E-mail: tongdi133@163.com;吴学仁 男, 博士, 研究员, 博士生导师, 中国航空工业集团公司资深首席技术专家。主要研究方向: 断裂力学与疲劳、 损伤容限技术、 材料的力学行为等。 Tel: 010-62458033 E-mail: xueren.wu@gmail.com

收稿日期: 2012-12-27

  修回日期: 2013-03-05

  网络出版日期: 2013-03-19

Weight Function Solutions of Crack Surface Displacements for Double Cracks Emanating from a Circular Hole in an Infinite Plate

  • TONG Dihua ,
  • WU Xueren
Expand
  • Beijing Institute of Aeronautical Materials, AVIC, Beijing 100095, China

Received date: 2012-12-27

  Revised date: 2013-03-05

  Online published: 2013-03-19

摘要

针对飞机结构中常见的孔边裂纹问题,结合塑性诱发的疲劳裂纹闭合分析需求,利用权函数封闭解法计算了无限大板圆孔边双裂纹在远方拉伸和部分裂纹面均布应力两种载荷条件下的裂纹面位移。研究表明,权函数法是一种强有力的计算任意载荷条件下裂纹面位移的高效、高精度方法。通过对权函数法计算结果的合理拟合,得到了两种载荷条件下裂纹面位移的高精度解析表达式,从而为无限大板圆孔边双裂纹的裂纹闭合分析和张开应力求解提供了高效、高精度的手段。

本文引用格式

童第华 , 吴学仁 . 无限大板圆孔边双裂纹的裂纹面位移权函数解[J]. 航空学报, 2013 , 34(10) : 2341 -2348 . DOI: 10.7527/S1000-6893.2013.0162

Abstract

This paper is aimed at crack surface displacement solutions for cracks at a circular hole, which is a common crack configuration in aircraft structures. The weight function method is used for calculating crack surface displacements for double cracks under both remote uniform tension and partial crack surface uniform segment loading. It is found that the weight function method is a very efficient and highly accurate method for calculating crack surface displacements under arbitrary load conditions. By rational curve fitting to the results obtained from the weight function method, accurate analytical expressions for crack surface displacements for the two load cases are developed. The present study provides an efficient and accurate means for crack closure and crack opening stress analysis for double cracks emanating from a circular hole in an infinite plate.

参考文献

[1] Newman J C, Jr. A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading. ASTM STP 748, 1981: 53-84.

[2] Budiansky B, Hutchinson J W. Analysis of closure in fatigue crack growth. Journal of Applied Mechanics, 1978, 45(2): 267-276.

[3] Kim J H, Lee S B. Fatigue crack opening stress based on the strip-yield model. Theoretical and Applied Fracture Mechanics, 2000, 34(1): 73-84.

[4] Liu J Z, Wu X R. Study on fatigue crack closure behavior for various cracked geometries. Engineering Fracture Mechanics, 1997, 57(5): 475-491.

[5] Ziegler B, Yamada Y, Newman J C, Jr. Application of a strip-yield model to predict crack growth under variable-amplitude and spectrum loading, Part 2: middle-crack-tension specimens. Engineering Fracture Mechanics, 2011, 78(14): 2609-2619.

[6] Wu X R, Zhao W. Dugdale model solution for compact specimen. Mechanical Behaviour of Materials: V, 1988: 243-248.

[7] Wang G S, Blom A F. A strip model for fatigue crack growth predictions under general load conditions. Engineering Fracture Mechanics, 1991, 40(3): 507-533.

[8] Yamada Y, Ziegler B, Newman J C, Jr. Application of a strip-yield model to predict crack growth under variable-amplitude and spectrum loading, Part 1: compact specimens. Engineering Fracture Mechanics, 2011, 78(14): 2597-2608.

[9] Mall S, Newman J C, Jr. The Dugdale model for compact specimen. ASTM STP. 868, 1985: 113-128.

[10] Newman J C, Jr. A nonlinear fracture mechanics approach to the growth of small cracks. In: Zocher H. Behaviour of Short Cracks in Airframe Materials. AGARD CP, 1983, 328: 6.1-6.26.

[11] Wu X R, Carlsson A J. Weight functions and stress intensity factor solutions. Oxford: Pergamon Press, 1991.

[12] Tada H, Paris P C, Irwin G R. The stress analysis of cracks handbook. 3rd ed. New York: ASME Press, 2000.

[13] Chinese Aeronautical Establishment. Handbook of stress intensity factors. Beijing: Science Press, 1993. (in Chinese) 中国航空研究院. 应力强度因子手册. 北京: 科学出版社, 1993.

[14] Dugdale D S. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104.

[15] Williams T N, Newman J C, Jr, Gullett P M. Crack-surface displacements for cracks emanating from a circular hole under various loading conditions. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34(4): 250-259.

文章导航

/