数字图像相关方法在焊缝材料力学性能测试中的应用
收稿日期: 2012-12-26
修回日期: 2013-03-05
网络出版日期: 2013-03-19
基金资助
国家自然科学基金(11102166,10932008);高等学校学科创新引智计划(B07050);西北工业大学基础研究基金(JC201201)
Application of Digital Image Correction Method to Test of Mechanical Properties for Weld Materials
Received date: 2012-12-26
Revised date: 2013-03-05
Online published: 2013-03-19
Supported by
National Natural Science Foundation of China (11102166, 10932008);"111" Project of China (B07050);Basic Research Foundation of NPU (JC201201)
焊缝材料是一种非均匀材料,其焊缝区、母材区、热影响区具有不同的力学性能。为了能使焊缝材料在工程实践中得到合理应用,对焊缝材料不同区域力学行为进行定量研究变得非常重要。本文采用数字图像相关(DIC)方法对TC4钛合金焊缝在单轴拉伸载荷作用下的变形场进行测量,得到了焊缝材料在不同载荷下不同区域的应变场,3个区域的应变从大到小依次为母材区、焊缝区、热影响区,并且母材区的应变远大于焊缝区和热影响区。母材区具有良好的韧性,其局部失效应变可达30%。同时对加载过程中的变形局部化现象进行了定量测量,焊缝在达到峰值载荷时就已经出现微小的颈缩,峰值载荷时颈缩量仅为0.075 mm,断前一瞬间颈缩量可达0.271 mm。最后对试验系统的误差作了简要分析,验证了DIC方法的可靠性。
杭超 , 杨广 , 李玉龙 , 于起峰 , 郭亚洲 . 数字图像相关方法在焊缝材料力学性能测试中的应用[J]. 航空学报, 2013 , 34(10) : 2372 -2382 . DOI: 10.7527/S1000-6893.2013.0163
Weld material is a kind of non-uniform material with the weld, parent material and the heat affected zone possessing different mechanical properties. It is important that the mechanical features of the diverse zones in a weld material are quantitatively investigated in order to reasonably apply it in engineering. This paper uses digital image correlation (DIC) method to measure the deformation field of a TC4 titanium alloy weld under uniaxial extension loading. The strain fields of different areas are obtained under different loads. The parent material zone, weld zone and heat affected zone are each characterized by the strain of its area in a descending order. The strain of the parent material zone is found to be much greater than that of other zones. The local failure strain of the parent material can reach 30%, which means the ductility of the parent material is fine. Then the transformative localization behavior is measured during the loading process. At the peak load, tiny necking of 0.075 mm is formed, while necking reaches 0.271 mm when the specimen fractures. Finally, the error of the test system is also analyzed, from which the reliability of the DIC method is verified.
[1] Yin X H. Status quo and trend of electric welding machine industry. Electrical Equipment Industry, 2005(5): 13-16. (in Chinese) 尹显华. 电焊机行业现状及发展趋势. 电器工业, 2005(5): 13-16.
[2] Sharpe W N, Yuan B, Vaidyanathan R, et al. Measurements of Young's modulus, Poisson's ratio, and tensile's strength of polysilicon. Proceedings of the Tenth IEEE International Workshop on Microelectromechanical Systems, 1997: 424-429.
[3] Zhu M H, Xu F, Tang Z B, et al. Application of ISDG method on mechanical properties measurement of welding line material. Chinese Quarterly of Mechanics, 2006, 27(3): 515-521. (in Chinese) 朱勐晖, 徐绯, 汤忠斌, 等. 干涉应变计法在焊缝材料力学性能测试中的应用. 力学季刊, 2006, 27(3): 515-521.
[4] Lei B L. Correlation between the micro shear test and conventional test. Journal of Southwest Jiaotong University, 1992(3): 67-73. (in Chinese) 雷斌隆. 微型剪切试验与常规试验之间的关系. 西南交通大学学报, 1992(3): 67-73.
[5] Lei B L, Chen H, Quan S Y. Correlations between micro-shear test and mechanical properties test of welded joint. Electric Welding Machine, 2006, 36(8): 40-42. (in Chinese) 雷斌隆, 陈辉, 权思勇. 焊接接头微型剪切试验与机械性能试验之间的关系. 电焊机, 2006, 36(8): 40-42.
[6] Wang Y L, Sun H, Liu J A. Research on mechanical properties test of weld joint microzones of aluminum alloy. Aluminum Machining, 1997, 19(3): 35-38. (in Chinese) 王元良, 孙鸿, 刘静安. 铝合金焊接接头微区性能试验研究. 铝加工, 1997, 9(3): 35-38.
[7] Tang Z B, Xu F, Xu Z J, et al. Research on mechanical properties of micro-zones of welding line. Journal of Mechanical Strength, 2010, 32(1): 58-63. (in Chinese) 汤忠斌, 徐绯, 许泽建, 等. 焊缝结构微区材料力学性能研究. 机械强度, 2010, 32(1): 58-63.
[8] Jin G C. Computer aided optical measurement. 2nd ed. Beijing: Tsinghua University Press, 2007: 141-170. (in Chinese) 金观昌. 计算机辅助光学测量. 2版. 北京: 清华大学出版社, 2007: 141-170.
[9] Pan B, Qian K M, Xie H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 2009, 20(6): 62001.
[10] Wang H W, Kang Y L, Xie H P. Advance in digital speckle correlation method and its application. Advances in Mechanics, 2005, 35(2): 195-203. (in Chinese) 王怀文, 亢一澜, 谢和平. 数字散斑相关方法与应用研究进展. 力学进展, 2005, 35(2): 195-203.
[11] Yu Q F. Image based precise measurement and motion measurement. Beijing: Science Press, 2002: 147-155. (in Chinese) 于起峰. 基于图像的运动测量与精密测量. 北京: 科学出版社, 2002: 147-155.
[12] Bruck H A, McNeill S R, Sutton M A, et al. Digital image correlation using Newton-Raphson method of partial differential correction. Experimental Mechanics, 1989, 29(3): 261-267.
[13] Vendroux G, Knauss W G. Submicron deformation field measurement: Part 2, improved digital image correlation. Experimental Mechanics 1998, 38(2): 86-92.
[14] Pan B, Xie H M, Xu B Q. Full-field strain measurement based on least-square fitting of local displacement for digital image correlation method. Acta Optica Sinica, 2007, 27(11): 1980-1986. (in Chinese) 潘兵, 谢惠民, 续伯钦. 数字图像相关中基于位移场局部最小二乘拟合的全场应变测量. 光学学报, 2007, 27(11): 1980-1986.
[15] Zhong Y, Qu J S, Chen W J, et al. Electron beam welding of TC4 alloy. Hot Working Technology, 2007, 36(15): 24-26. (in Chinese) 钟玉, 屈金山, 陈文静, 等. TC4钛合金的电子束焊. 热加工工艺, 2007, 36(15): 24-26.
[16] Peng Z, Goodson K E. Subpixel displacement and deformation gradient measurement using digital image speckle correlation. Optical Engineering, 2001, 40(8): 1613-1620.
/
〈 | 〉 |