固体力学与飞行器总体设计

基于非频散信号构建的Lamb波高分辨率损伤成像方法

  • 蔡建 ,
  • 石立华 ,
  • 卿新林 ,
  • 杜朝亮
展开
  • 1. 中国商用飞机有限责任公司 北京民用飞机技术研究中心, 北京 102211;
    2. 解放军理工大学 电磁环境效应与光电工程国家级重点实验室, 江苏 南京 210007;
    3. 南京航空航天大学 机械结构力学及控制国家重点实验室, 江苏 南京 210016
蔡建 男,博士,工程师。主要研究方向:结构健康监测、测试信号处理。Tel:010-57808726 E-mail:caijian2@com;ac.cc;石立华 男,博士,教授,博士生导师。主要研究方向:超声无损检测、电磁兼容试验技术。Tel:025-80821382 E-mail:shilhnj@163.com;卿新林 男,博士,研究员,博士后导师。主要研究方向:多功能传感网络、健康管理系统、结构健康监测、智能材料与结构。Tel:010-57808828 E-mail:qingxinlin@com;ac.cc;杜朝亮 男,博士,工程师。主要研究方向:结构健康监测、定量化裂纹监测。Tel:010-57808719 E-mail:duchaoliang@com;ac.cc

收稿日期: 2012-11-06

  修回日期: 2013-02-19

  网络出版日期: 2013-03-08

基金资助

国家自然科学基金(11172053,10872217);国家"863"计划(2012AA040209);上海市博士后科学基金(12R21421900)

Lamb Wave High-resolution Damage Imaging Method Based on Non-dispersive Signal Construction

  • CAI Jian ,
  • SHI Lihua ,
  • QING Xinlin ,
  • DU Chaoliang
Expand
  • 1. Beijing Aeronautical Science and Technology Research Institute, COMAC, Beijing 102211, China;
    2. National Key Laboratory on Electromagnetic Environmental Effects and Electro-optical Engineering, PLA University of Science and Technology, Nanjing 210007, China;
    3. National Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-11-06

  Revised date: 2013-02-19

  Online published: 2013-03-08

Supported by

National Natural Science Foundation of China (11172053, 10872217);National High-tech Research and Development Program of China (2012AA040209);Shanghai Postdoctoral Science Foundation (12R21421900)

摘要

Lamb波损伤成像是结构健康监测的研究热点之一,然而在实际应用中,成像分辨率很容易受到Lamb波频散特性的影响。本文研究了非频散信号构建(ND-SC)的频散补偿方法并用于提高Lamb波成像分辨率。根据频域中建立的Lamb波传感模型,分析了ND-SC原理,并分别按照宽带激励和窄带激励两种情况对ND-SC的实现方式进行了讨论。随后结合经典的延迟叠加算法提出了高分辨率损伤成像方法。针对铝板的实验结果证明了本文提出的ND-SC方法和高分辨率损伤成像方法的有效性。

本文引用格式

蔡建 , 石立华 , 卿新林 , 杜朝亮 . 基于非频散信号构建的Lamb波高分辨率损伤成像方法[J]. 航空学报, 2013 , 34(8) : 1815 -1823 . DOI: 10.7527/S1000-6893.2013.0125

Abstract

Lamb wave damage imaging is one of the focal research issues in structural health monitoring. However, in practical applications, the imaging resolution is easily affected by the dispersion characteristics of Lamb waves. An dispersion compensation method of non-dispersive signal construction (ND-SC) is studied in this paper to improve Lamb wave imaging resolution. Based on the Lamb wave sensing model established in frequency domain, the theory of ND-SC is analyzed. In addition, the realization of ND-SC is discussed under broadband excitation and narrowband excitation, respectively. Subsequently, associated with the classic delay-and-sum algorithm, a high-resolution damage imaging method is developed. The efficiency of the ND-SC and high-resolution damage imaging methods proposed in this paper is proved by experimental results in an aluminum plate.

参考文献

[1] Yuan S F, Liang D K, Shi L H, et al. Recent progress on distributed structural health monitoring research at NUAA. Journal of Intelligent Material Systems and Structures, 2008, 19(3): 373-386.

[2] Qing X L, Beard S J, Kumar A, et al. Advances in the development of built-in diagnostic system for filament wound composite structures. Composites Science and Technology, 2006, 66(11-12): 1694-1702.

[3] Qiu L, Yuan S F. On development of a multi-channel PZT array scanning system and its evaluating application on UAV wing box. Sensors and Actuators A: Physical, 2009, 151(2): 220-230.

[4] Xu Y D, Yuan S F, Peng G. Study on two-dimensional damage location in structure based on active Lamb wave detection technique. Acta Aeronautica et Astronautica Sinica, 2004, 25(5): 476-479. (in Chinese) 徐颖娣, 袁慎芳, 彭鸽. 二维结构损伤的主动Lamb波定位技术研究. 航空学报, 2004, 25(5): 476-479.

[5] Yu L, Giurgiutiu V. In-situ optimized PWAS phased arrays for Lamb wave structural health monitoring. Journal of Mechanics of Materials and Structures, 2007, 2(3): 459-487.

[6] Wang L, Yuan F G. Damage identification in a composite plate using prestack reverse-time migration technique. Structural Health Monitoring, 2005, 4(3): 195-211.

[7] Leonard K R, Malyarenko E V, Hinders M K. Ultrasonic Lamb wave tomography. Inverse Problems, 2002, 18(6): 1795-1808.

[8] Zhao X, Gao H, Zhang G, et al. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. defect detection, localization and growth monitoring. Smart Materials and Structures, 2007, 16(4): 1208-1217.

[9] Wang C H, Rose J T, Chang F G. A synthetic time-reversal imaging method for structural health monitoring. Smart Materials and Structures, 2004, 13(2): 415-423.

[10] Wang Q, Yuan S F. Baseline-free imaging method based on new PZT sensor arrangements. Journal of Intelligent Material Systems and Structures, 2009, 20(14): 1663-1673.

[11] Wilcox P, Lowe M, Cawley P. The effect of dispersion on long-range inspection using ultrasonic guided waves. NDT&E International, 2001, 34(1): 1-9.

[12] Cai J, Shi L H, Yuan S F, et al. High spatial resolution imaging for structural health monitoring based on virtual time reversal. Smart Materials and Structures, 2011, 20(5): 055018-55028.

[13] Liu L, Yuan F G. A linear mapping technique for dispersion removal of Lamb waves. Structural Health Monitoring, 2010, 9(1): 75-86.

[14] Cai J, Shi L H, Yuan S F, et al. A virtual time reversal method based on broadband excitation. Chinese Journal of Scientific Instrument, 2011, 32(1): 218-224. (in Chinese) 蔡建, 石立华, 袁慎芳, 等. 一种基于宽带激励的虚拟时间反转方法. 仪器仪表学报, 2011, 32(1): 218-224.

[15] Michaels J E. Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors. Smart Materials and Structures, 2008, 17(3): 1-15.

[16] Cai J, Shi L H, Yuan S F. Improved "delay-and-sum" imaging method for adjacent multi-damages. Journal of Vibration and Shock, 2011, 30(8): 67-71. (in Chinese) 蔡建, 石立华, 袁慎芳. 一种改进的近邻多损伤"移相叠加"成像方法. 振动与冲击, 2011, 30(8): 67-71.

文章导航

/