固体力学与飞行器总体设计

新型一体化热防护系统热力分析与试验研究

  • 解维华 ,
  • 霍施宇 ,
  • 杨强 ,
  • 杜翀 ,
  • 孟松鹤 ,
  • 韩杰才
展开
  • 哈尔滨工业大学 特种环境复合材料技术重点实验室, 黑龙江 哈尔滨 150080
解维华 男, 博士, 副教授, 硕士生导师。主要研究方向: 热防护材料/结构的设计、模拟评价与结构健康监测。Tel: 0451-86402343 E-mail: michaell@hit.edu.cn

收稿日期: 2012-11-05

  修回日期: 2013-02-02

  网络出版日期: 2013-03-08

基金资助

国家自然科学基金(91216302,91016029,11272107)

Thermal-mechanical Analysis and Test Study of a New Integrated Thermal Protection System

  • XIE Weihua ,
  • HUO Shiyu ,
  • YANG Qiang ,
  • DU Chong ,
  • MENG Songhe ,
  • HAN Jiecai
Expand
  • Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150080, China

Received date: 2012-11-05

  Revised date: 2013-02-02

  Online published: 2013-03-08

Supported by

National Natural Science Foundation of China (91216302, 91016029, 11272107)

摘要

高速飞行器对结构效率的苛刻要求使得热防护系统不断趋于向轻质化、集成化方向发展,新型的力热耦合一体化热防护系统(ITPS)极具发展潜力。首先阐释了一种新型一体化热防护方案的概念与特点,总结了一体化结构设计的基本原则,数值分析了结构参数对背面温度响应、屈曲临界载荷的影响,结果表明腹板厚度对背面温度以及屈曲临界载荷的影响最大。然后设计并加工制备了ITPS的面板与单胞试验样件,分别展开了800 ℃的高温防隔热性能试验考核和屈曲性能的力学试验研究;试验表明腹板结构是引发热短路效应和屈曲的关键因素,屈曲试验与模拟结果吻合,高温屈曲分析表明温度梯度对屈曲特征有较大影响。

本文引用格式

解维华 , 霍施宇 , 杨强 , 杜翀 , 孟松鹤 , 韩杰才 . 新型一体化热防护系统热力分析与试验研究[J]. 航空学报, 2013 , 34(9) : 2169 -2176 . DOI: 10.7527/S1000-6893.2013.0124

Abstract

The demanding requirements of high-speed aircraft for structural efficiency lead to their thermal protection system to be lightweight and integrated. The new thermal-mechanical coupling integrated thermal protection system (ITPS) has great potential for development. Firstly, the concept and characteristics of a new integrated thermal protection structure design are explained and the basic design criteria are summarized. Numerical analysis is completed to study the impact of structural parameters on temperature response and the critical buckling load. The results show that web thickness has the greatest impact on the bottom temperature as well as the critical buckling load. ITPS panels and unit-cell test samples are designed and then manufactured in order to conduct insulation performance test at 800 ℃ and buckling performance mechanical tests. The experiments show that web structure is the key factor causing the thermal short circuit effect and buckling. The results of the buckling tests are consistent with finite element analysis, and high-temperature buckling analysis shows that the temperature gradient has great impact on the buckling form.

参考文献

[1] Guan C L, Li Y, He X D. Research status of structures and materials for reusable TPS. Aerospace Materials & Technology, 2003(6): 7-11. (in Chinese) 关春龙, 李垚, 赫晓东. 可重复使用热防护系统防热结构及材料的研究现状. 宇航材料工艺, 2003(6): 7-11.

[2] Bapanapalli S K, Martinez O M, Gogu C, et al. Analysis and design of corrugated-core sandwich panels for thermal protection systems of space vehicles. AIAA-2006-1942, 2006.

[3] Pichon T, Soyris P, Foucault A, et al. Thermal protection systems technologies for re-entry vehicles. AIAA-2006-7950, 2006.

[4] Libove C, Hubka R E. Elastic constants for corrugated core sandwich plates. NACA-TN-2289, 1951.

[5] Lok T S, Cheng Q H. Elastic stiffness properties and behavior of truss-cross sandwich panel. Journal of Structure Engineering, 2000, 126(5): 552-559.

[6] Lok T S, Cheng Q H, Heng L. Equivalent stiffness parameters of truss-core sandwich panel. Proceedings of the 9th International Offshore and Polar Engineering Conference, 1999: 282-288.

[7] Martinez O A, Bapanapalli S, Sankar B, et al. Micromechanical analysis of composite truss-core sandwich panels for integral thermal protection systems. AIAA-2006-1876, 2006.

[8] Martinez O A, Sankar B V, Haftka R T, et al. Micromechanical analysis of composite corrugated-core sandwich panels for integral thermal protection systems. AIAA Journal, 2007, 45(9): 2323-2336.

[9] Martinez O A, Sharma A, Sankar B V, et al. Thermal force and moment determination of an integrated thermal protection system. AIAA Journal, 2010, 48(1): 119-128.

[10] Martinez O A, Sankar B V, Haftka R T. Two-dimensional orthotropic plate analysis for an integral thermal protection system. AIAA Journal, 2012, 50(2): 387-398.

[11] Gogu C, Bapanapalli S K, Haftka R T, et al. Comparison of materials for an integrated thermal protection system for spacecraft reentry. AIAA-2007-1860, 2007.

[12] Gogu C, Bapanapalli S K, Haftka R T, et al. Dimensionality reduction approach for response surface approximations application to thermal design. AIAA Journal, 2009, 47(7): 1700-1708.

[13] Sharma A, Gogu C, Martinez O A, et al. Multi-fidelity design of an integrated thermal protection system for spacecraft reentry. AIAA-2008-2062, 2008.

[14] Sharma A, Sankar B V, Haftka R T. Multi-fidelity analysis of corrugated-core sandwich panels for integrated thermal protection systems. AIAA-2009-2201, 2009.

[15] Sharma A, Sankar B V, Haftka R T. Homogenization of plates with microstructure and application to corrugated core sandwich panels. AIAA-2010-2706, 2010.

文章导航

/