流体力学与飞行力学

壁面温度条件对边界层转捩预测的影响

  • 孔维萱 ,
  • 阎超 ,
  • 赵瑞
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100191
孔维萱 女, 博士研究生。主要研究方向: 计算流体力学, 转捩模式。 Tel: 010-82318071 E-mail: weixuankong@163.com;阎超 男, 博士, 教授, 博士生导师。主要研究方向: 空气动力学, 计算流体力学。 Tel: 010-82317019 E-mail: yanchao@buaa.edu.cn

收稿日期: 2012-11-07

  修回日期: 2012-12-25

  网络出版日期: 2013-02-26

基金资助

国家"973"计划(2009CB72414)

Effect of Wall Temperature on Boundary Layer Transition Prediction Using Transition Model

  • KONG Weixuan ,
  • YAN Chao ,
  • ZHAO Rui
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2012-11-07

  Revised date: 2012-12-25

  Online published: 2013-02-26

Supported by

National Basic Research Program of China (2009CB72414)

摘要

边界层的转捩预测是高超声速飞行器气动力和热防护设计的关键问题之一。基于此,研究了壁面温度条件对采用转捩模式预测边界层转捩的影响,对k-ω-γ转捩模式的时间尺度和间歇因子生成项进行了修正。在非湍流脉动概念所模化的不稳定扰动时间尺度中,考虑了壁面温度条件对流动转捩的影响,引入壁面冷却对不稳定扰动最大增长率、临界雷诺数等量的模化。采用修正后的k-ω-γ转捩模式计算高超声速小球头锥零迎角流动转捩问题,通过与稳定性分析和原始k-ω-γ转捩模式计算结果的对比,发现改进后的模式在绝热和等温两种壁温条件下,能够较为准确地模拟第一模态和第二模态的不稳定频率、最大增长率,并能正确预测转捩位置。

本文引用格式

孔维萱 , 阎超 , 赵瑞 . 壁面温度条件对边界层转捩预测的影响[J]. 航空学报, 2013 , 34(10) : 2249 -2255 . DOI: 10.7527/S1000-6893.2013.0185

Abstract

The correct prediction of boundary layer transition is essential for a successful design of hypersonic flying vehicles. In this paper, the effect of wall temperature condition on boundary layer transition prediction using a transition model is studied. Modifications are made to the time scale based on non-turbulence kinetic energy and the production term of the intermittency factor equation of k-ω-γ transition model. The effects of wall temperature condition on the maximum amplification rate and critical Reynolds number are considered when modeling the first and second mode. The influence of wall temperature on a hypersonic boundary layer of a blunt cone with small nose bluntness at zero angle of attack is investigated by the modified k-ω-γ transition model. The improved model can provide reasonable results for the maximum amplification rate and the most unstable frequency of the first oblique and two-dimensional second mode both at adiabatic and isothermal wall conditions. The transition locations predicted by the modified k-ω-γ transition model agree well with those obtained by stability analysis.

参考文献

[1] Launius R. Hypersonic flight-evolution from X-15 to space shuttle. AIAA-2003-2716, 2003.
[2] Mack L. Linear stability theory and the problem of supersonic boundary-layer transition. AIAA Journal, 1975, 13(3): 278-289.
[3] Bountin D. Development of natural disturbances in a hypersonic boundary layer on a sharp cone. Journal of Applied Mechanics and Technical Physics, 2001, 42(1): 57-62.
[4] Malik M. Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA Journal, 1989, 27(11): 1487-1493.
[5] Mayle R, Schulz A. The path to predicting bypass transition. Journal of Turbomachinery, 1997, 119: 405-411.
[6] Anderson P, Berggren M, Henningson D. Optimal disturbances and bypass transition in boundary layers. Physics of Fluids, 1999, 11: 134-150.
[7] Leib S, Wundrow D, Goldstein M. Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. Journal of Fluid Mechanism, 1999, 380: 169-203.
[8] Warren S. Transition closure model for predicting transition onset. Journal of Aircraft, 1998, 35: 769-775.
[9] Xu D, Ma H Y. Engineering transition models for hypersonic boundary layer. Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(1): 43-49.(in Chinese) 许丁, 马晖扬. 高超声速边界层工程转捩模式研究. 中国科学院研究生院学报, 2009, 26(1): 43-49.
[10] Song B, Li C X. Laminar-to-turbulent transition onset prediction of hypersonic flows based on laminar kinetic energy equation. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(2): 244-247.(in Chinese) 宋博, 李椿萱. 基于非湍流脉动动能方程的高超神速转捩预测. 北京航空航天大学学报, 2010, 36(2): 244-247.
[11] Wang L. Investigation of transition model for hypersonic boundary layer. Beijing: Tsinghua University, 2008.(in Chinese) 王亮. 高超音速边界层转捩的模式研究. 北京: 清华大学, 2008.
[12] Wang L. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition. Flow, Turbulence and Combustion, 2011, 87(1): 165-187.
[13] Zhou H. Hydrodynamic stability. Beijing: National Defense Industry Press, 2004: 177-181.(in Chinese) 周恒. 流动稳定性. 北京: 国防工业出版社, 2004: 177-181.
[14] Su C H. The transition prediction of boundary layers on a hypersonic cone and the improvement of the eN method. Tianjin: Tianjin University, 2008.(in Chinese) 苏彩虹. 高超音速边界层的转捩预测及eN方法的改进. 天津: 天津大学, 2008.
[15] Walker G J. Transition flow on axial turbomachine blading. AIAA Journal, 1989, 27(5): 595-602.
[16] Mack L. Boundary-layer stability theory. AGARD Report No.709, 1984.
[17] Wilcox D. Turbulence model transition prediction. AIAA Journal, 1975, 13(2): 241-243.
[18] Fisher D. In-flight transition measurement on a 10° cone at Mach number from 0.5 to 2. NASA TP-1971, 1982.
文章导航

/