流体力学与飞行力学

捕获非合作目标后航天器的自主稳定技术研究

  • 韦文书 ,
  • 荆武兴 ,
  • 高长生
展开
  • 哈尔滨工业大学 航天工程系, 黑龙江 哈尔滨 150001
韦文书,男,博士研究生。主要研究方向:飞行器动力学制导与控制。Tel:0451-86418233,E-mail:weiwenshu11@hotmail.com;荆武兴,男,博士,教授,博士生导师。主要研究方向:飞行器动力学、制导、导航与控制。Tel:0451-86418233,E-mail:jingwuxing@hit.edu.cn;高长生,男,博士,副教授,硕士生导师。主要研究方向:飞行器动力学、制导、导航与控制。Tel:0451-86418233,E-mail:corturb@126.com

收稿日期: 2012-08-31

  修回日期: 2013-01-23

  网络出版日期: 2013-02-26

基金资助

国家自然科学基金(10902026)

Research Automatic Stability Technology of Spacecraft Assembly with Captured Non-cooperative Targets on Orbit

  • WEI Wenshu ,
  • JING Wuxing ,
  • GAO Changsheng
Expand
  • Department of Aerospace Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2012-08-31

  Revised date: 2013-01-23

  Online published: 2013-02-26

Supported by

National Natural Science Foundation of China (10902026)

摘要

捕获非合作目标后航天器质量特性发生突变,这大大地增加了系统的不确定性,控制不当容易导致失稳。为避免控制过程中航天器出现较大系统干扰问题,提出了先识别捕获后的系统质量特性,而后合理摆放非合作目标的自主稳定策略。首先,对航天器捕获过程和自主稳定策略进行了描述;其次,依据动量矩定理建立了非合作目标与航天器组合系统的数学模型,推导了非合作目标位置与质量特性之间的关系;然后,基于航天器数学模型和姿态测量信息,采用非线性规划方法对质量特性进行了辨识;最后,利用滑模变结构理论设计了非合作目标的控制回路,采用Lyapunov理论对系统的稳定性进行了分析。仿真结果表明:本文提出的自主配平策略响应快、精度高,适合在轨服务。

本文引用格式

韦文书 , 荆武兴 , 高长生 . 捕获非合作目标后航天器的自主稳定技术研究[J]. 航空学报, 2013 , 34(7) : 1520 -1530 . DOI: 10.7527/S1000-6893.2013.0114

Abstract

After capturing non-cooperative targets, the mass properties of the spacecraft change abruptly, which makes the system uncertain and unstable. To avoid excessive interference during the control process, an automatic balancing strategy is proposed which identifies the mass properties of the assembly and then moves the non-cooperative targets. First, the capturing process of non-cooperative targets and the automatic balancing strategy are described. Secondly, based on the theorem of the moment of momentum, the dynamic models of the assembly are generated, and the analytical relationship between the location of the non-cooperative target and the offset of the centroid is derived. Thirdly, based on the information measured by the optical gyros, a nonlinear programming method is used to get the mass properties. Finally, the sliding mode variable structure control theory is used to design the control loop of the non-cooperative targets, while the stability of the system is analyzed by Lyapunov theory. It is demonstrated that the strategy proposed in this paper is effective and suitable for services on-orbit.

参考文献

[1] Cai H L, Gao Y M, Bing Q J, et al. The research status and key technology analysis of foreign non-cooperative target in space capture system. Journal of the Academy of Equipment Command & Technology, 2010, 21(6):71-77.(in Chinese) 蔡洪亮, 高永明, 邴启军, 等. 国外空间非合作目标抓捕系统研究现状与关键技术分析. 装备指挥技术学院学报, 2010, 21(6): 71-77.



[2] Chen T, Xu S J. A fuzzy controller for terminal approach of autonomous rendezvous and docking with non-cooperative target. Journal of Astronautics, 2006,27(3):416-421. (in Chinese) 陈统, 徐世杰. 非合作目式自主交会对接的终端接近模糊控制. 宇航学报, 2006, 27(3): 416-421.



[3] Wingo D R. Orbital recovery’s responsive commercial space tug for life extension mission. AIAA-2004-3004, 2004.



[4] Polites M E. An assessment of the technology of automated rendezvous and capture in space. NASA-TP-1998-208528, 1998.



[5] Regan F J, Kavetsky R A. Add 2 on controller for ballistic reentry vehicles. IEEE Transactions on Automatic Control, 1984, 12(6): 869-880.



[6] Lorell K R, Lange B O. An automatic mass-trim system for spinning spacecraft. AIAA Journal, 1972, 10(8): 1031-1015.



[7] Childs D A. Movable mass attitude stabilization system for artificial space stations. Journal of Spacecraft and Rockets, 1974, 8(9): 11-15.



[8] Kunciw B, Kaplan M. Optimal space station detumbling by Internal mass motion. Automatica, 1976, 12(5):45-51.



[9] Salimov G R. On the stability of a rotating space station containing a moving element. Mechanics Solids, 1975, 10(5): 41-45.



[10] Jae J K, Brij N A. Automatic mass balancing of air-bearing-based three-axis rotational spacecraft simulator. Journal of Guidance, Control, and Dynamics, 2009, 32(3):1005-1017.



[11] Small D, Zajac F. A linearized analysis and design of an automatic balancing system for the three axis air bearing table. NASA TM-X-50177, 1963.



[12] Peck M A, Miller L, Cavender A R, et al. Air-bearing-based testbed for momentum control systems and spacecraft line of sight. AAS 2003-127, 2003.



[13] Wilson E, Mah R W, Guerrero M C, et al. Imbalance identification and compensation for an airborne telescope. Proceedings of the 1998 IEEE. Piscataway: American Control Conference, 1998: 856-860.



[14] Dimitrov D N, Yoshida K. Momentum distribution in a space manipulator for facilitating the post-impact control. IEEE International Conference on Intelligent Robots and Systems, 2004: 80-88.



[15] Bossea A B, Barnds W J, Brown M A, et al. SUMO: Spacecraft for the universal modification of orbits. The SPIE Defense and Security Symposium. Bellingham: SPIE, 2004: 36-46.



[16] SBischof B, Kerstein L, Starke J, et al. ROGER-Robotic geostationary orbit restorer. AIAA 54th International Astronautical Congress of the International Astronautical Federation, 2003: 1-9.



[17] Hirzinger G, Landzettel K, Brunner B, et al. DLRS robotics technologies for on orbit servicing. Advanced Robotics, 2004, 1(18): 3-11.



[18] Martin E, Dupuis E, Piedboeuf J C, et al. The TECSAS mission from a Canadian perspective. ISAIRAS 2005 Conference. Germany: ISAIRAS, 2005: 3-11



[19] Tanygin S, Williams T. Mass property estimation using coasting maneuvers. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 625-632.



[20] Schwartz J L, Hall C D. System identification of a spherical air-bearing spacecraft simulator. AAS-2004-122, 2004.



[21] Kim J A, Acikmese A B, Shields J F. Spacecraft inertia estimation via constrained least squares. IEEE Aerospace Conference. Piscataway: IEEE, 2006.



[22] Peck M A. Estimation of inertia parameters for gyrostats subject to gravity-gradient torques. AAS 2001-308, 2011.



[23] Jung D, Tsiotras P. A 3-dof experimental test-bed for integrated attitude dynamics and control research. AIAA-2003-5331, 2003.



[24] Wright S. Parameter estimation of a spacecraft simulator using parameter-adaptive control. Blacksburg: Aerospace and Ocean Engineering Department,Virginia Ploytechnic Institute and State University, 2006.



[25] Li Z X, Li G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control. Acta Aeronautica et Astronautica Sinicia, 2012, 33(11): 2121-2129. (in Chinese) 李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制. 航空学报, 2012, 33(11): 2121-2129.

文章导航

/