固体力学与飞行器总体设计

变体后缘的索网传动机构设计与分析

  • 尹维龙 ,
  • 石庆华 ,
  • 田东奎
展开
  • 1. 哈尔滨工业大学 复合材料与结构研究所, 黑龙江 哈尔滨 150080;
    2. 中航工业北京航空制造工程研究所, 北京 100004
尹维龙 男,博士,副教授。主要研究方向:变体飞行器结构,智能与仿生结构。Tel:0451-86403786 E-mail:yinweilongbj@sina.com;石庆华 男,博士,高级工程师。主要研究方向:复合材料结构,智能飞行器结构。Tel:010-61499366 E-mail:jxaabb@sina.com;田东奎 男,硕士研究生。主要研究方向:柔性后缘驱动机制。Tel:0451-86403786 E-mail:tdkbetty@126.com

收稿日期: 2012-10-10

  修回日期: 2013-01-23

  网络出版日期: 2013-02-21

基金资助

高等学校博士学科点专项科研基金(20102302120032);中央高校基本科研业务费专项基金资助(HIT.NSRIF.2012028)

Design and Analysis of Transmission Mechanism with Cable Networks for Morphing Trailing-edge

  • YIN Weilong ,
  • SHI Qinghua ,
  • TIAN Dongkui
Expand
  • 1. Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China;
    2. AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100004, China

Received date: 2012-10-10

  Revised date: 2013-01-23

  Online published: 2013-02-21

Supported by

Research Fund for the Doctoral Program of Higher Education of China (20102302120032);The Fundamental Research Funds for the Central Universities (HIT.NSRIF. 2012028)

摘要

为了提高变体后缘的驱动效率,提出了一种可放大驱动力的索网传动机构。采用梁模型推导了单节点索网/基板弯曲变形的非线性微分方程,给出了基于有限差分法的迭代格式。数值模拟结果表明:索网机构比单索机构具有更高的驱动效率,降低了驱动器的最大驱动力;降低了基板的最大弯矩,且使最大弯矩点后移。最后,设计了单索和索网机构驱动钢板弯曲变形的实验装置,给出了钢板自由端垂直位移和外载关系的实验结果,结果表明当钢板等效偏转角的设计值为10°时,索网机构的最大驱动力比单索机构降低了41%。

本文引用格式

尹维龙 , 石庆华 , 田东奎 . 变体后缘的索网传动机构设计与分析[J]. 航空学报, 2013 , 34(8) : 1824 -1831 . DOI: 10.7527/S1000-6893.2013.0115

Abstract

In order to improve the driving efficiency of a morphing trailing-edge, a transmission mechanism with cable networks is developed to amplify the driving force. The nonlinear differential equation of a cable networks with a single node and mid-plate bending is derived. The iterative scheme is given based on the finite difference method. Numerical results show that the cable networks has a higher driving efficiency and reduces the maximum driving force compared with the single cable. In addition, the maximum bending moment of the mid-plane is reduced and the location of the maximum bending moment moves backward. Finally, an experimental device is designed and manufactured to test steel sheet bending with a single cable and cable networks. The experimental result of the relationship between the vertical displacement of the free end and the external load shows that the cable networks reduces the maximum driving force by 41% as compared with the single cable when the equivalent deflection angle of the steel plate is 10°.

参考文献

[1] Du S Y, Zhang B M. Status and developments of intelligentized aircraft structures. Journal of Astronautics, 2007, 28(4): 773-778. (in Chinese) 杜善义, 张博明. 飞行器结构智能化研究及其发展趋势. 宇航学报, 2007, 28(4): 773-778.

[2] Barbarino S, Bilgen O, Ajaj M R, et al. A review of morphing aircraft. Journal of Intelligent Material Systems and Structures, 2011, 22(1): 823-877.

[3] Vasista S, Tong L Y, Wong K C. Realization of morphing wings a multidisciplinary challenge. Journal of Aircraft, 2012, 49(1): 11-28.

[4] Reich G, Sanders B. Introduction to morphing aircraft research. Journal of Aircraft, 2007, 44(1): 1059-1060.

[5] Yin W L. Stiffness requirement of flexible skin for variable trailing-edge camber wing. Science in China Technological Sciences, 2010, 53(4): 1077-1081.

[6] Parker H F. The parker variable camber wing. NACA-1920-77, 1920.

[7] John W S, Wilton P L, Gordon A P. Variable camber systems integration and operational performance of the AFTI/F-111 mission adaptive wing. NASA TM-4370, 1992.

[8] Poonsong P. Design and analysis of a multi-section variable camber wing. Washington: University of Maryland, 2004: 10-11.

[9] Yin W L, Tian D K, Chen Y J. Design and test of pneumatic artificial muscle driven variable trailing-edge camber wing. Journal of Harbin Institute of Technology, 2012, 3(19): 99-103.

[10] Daynes S, Weaver P M. A morphing trailing edge device for a wind turbine. Journal of Intelligent Material Systems and Structures, 2012, 23(6): 691-701.

[11] Shu S G, Lagoudas D C, Hughes D, et al. Modeling of a flexible beam actuated by shape memory alloy wires. Smart Materials and Structures, 1997, 6(3): 265-277.

[12] Zakerzadeh M R, Salehi H, Sayyaadi H. Modeling of a nonlinear Euler-Bernoulli flexible beam actuated by two active shape memory alloy actuators. Journal of Intelligent Material Systems and Structures, 2011, 22(11): 1249-1268.

[13] Chen Z D. Large deformation theory of rod, plate, shell. Beijing: Science Press, 1994: 75-76. (in Chinese) 陈至达. 杆、板、壳大变形理论. 北京: 科学出版社, 1994: 75-76.

[14] Thill C, Etches J, Bond I, et al. Morphing skins. The Aeronautical Journal, 2008, 112(1129): 117-139.

[15] Yin W L. Structure design and analysis of flexible adaptive camber wing. Harbin: Postdoctoral report of Harbin Institute of Technology, 2010: 18-19. (in Chinese) 尹维龙. 柔性自适应机翼结构设计与力学分析. 哈尔滨:哈尔滨工业大学博士后研究工作报告, 2010: 18-19.

[16] Zhuang K Y. Several questions of variable structure control theory and its application. Hangzhou: Department of Control Science and Engineering, Zhejiang University, 2002: 27-28. (in Chinese) 庄开宇. 变结构控制理论若干问题研究及其应用. 杭州: 浙江大学控制科学与工程学系, 2002: 27-28.

文章导航

/